cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335438 Number of partitions of k_n into two distinct parts (s,t) such that k_n | s*t, where k_n = A335437(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 3, 2, 2, 1, 4, 1, 1, 3, 1, 4, 2, 1, 1, 5, 2, 1, 3, 1, 5, 3, 2, 1, 1, 4, 6, 1, 2, 1, 2, 1, 3, 6, 1, 4, 1, 1, 2, 1, 7, 1, 1, 5, 4, 3, 2, 2, 7, 1, 1, 1, 2, 1, 5, 8, 3, 1, 4, 1, 1, 1, 3, 8, 2, 1, 1, 6, 1, 3, 2, 1, 1, 2, 9, 5, 1, 1, 2, 1, 3
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 10 2020

Keywords

Comments

a(n) >= 1.

Examples

			a(2) = 1; A335437(2) = 16 has exactly one partition into two distinct parts (12,4), such that 16 | 12*4 = 48. Therefore, a(2) = 1.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,beta,t;
         F:= ifactors(n)[2];
         beta:= mul(t[1]^floor(t[2]/2),t=F);
         if beta <= 2 then NULL else floor((beta-1)/2) fi
    end proc:
    map(f, [$1..500]); # Robert Israel, Dec 23 2024
  • Mathematica
    Table[If[Sum[(1 - Ceiling[(i*(n - i))/n] + Floor[(i*(n - i))/n]), {i, Floor[(n - 1)/2]}] > 0, Sum[(1 - Ceiling[(i*(n - i))/n] + Floor[(i*(n - i))/n]), {i, Floor[(n - 1)/2]}], {}], {n, 400}] // Flatten

Formula

a(n) = floor((A000188(A335437(n))-1)/2). - Robert Israel, Dec 23 2024