A335461 Triangle read by rows where T(n,k) is the number of patterns of length n with k runs.
1, 0, 1, 0, 1, 2, 0, 1, 4, 8, 0, 1, 6, 24, 44, 0, 1, 8, 48, 176, 308, 0, 1, 10, 80, 440, 1540, 2612, 0, 1, 12, 120, 880, 4620, 15672, 25988, 0, 1, 14, 168, 1540, 10780, 54852, 181916, 296564, 0, 1, 16, 224, 2464, 21560, 146272, 727664, 2372512, 3816548
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 2 0 1 4 8 0 1 6 24 44 0 1 8 48 176 308 0 1 10 80 440 1540 2612 0 1 12 120 880 4620 15672 25988 Row n = 3 counts the following patterns: (1,1,1) (1,1,2) (1,2,1) (1,2,2) (1,2,3) (2,1,1) (1,3,2) (2,2,1) (2,1,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Crossrefs
Programs
-
Mathematica
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; Table[Length[Select[Join@@Permutations/@allnorm[n],Length[Split[#]]==k&]],{n,0,5},{k,0,n}]
-
PARI
\\ here b(n) is A005649. b(n) = {sum(k=0, n, stirling(n,k,2)*(k + 1)!)} T(n,k)=if(n==0, k==0, b(k-1)*binomial(n-1,k-1)) \\ Andrew Howroyd, Dec 31 2020
Formula
T(n,k) = A005649(k-1) * binomial(n-1,k-1) for k > 0. - Andrew Howroyd, Dec 31 2020
Comments