cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335461 Triangle read by rows where T(n,k) is the number of patterns of length n with k runs.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 4, 8, 0, 1, 6, 24, 44, 0, 1, 8, 48, 176, 308, 0, 1, 10, 80, 440, 1540, 2612, 0, 1, 12, 120, 880, 4620, 15672, 25988, 0, 1, 14, 168, 1540, 10780, 54852, 181916, 296564, 0, 1, 16, 224, 2464, 21560, 146272, 727664, 2372512, 3816548
Offset: 0

Views

Author

Gus Wiseman, Jul 03 2020

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.

Examples

			Triangle begins:
     1
     0     1
     0     1     2
     0     1     4     8
     0     1     6    24    44
     0     1     8    48   176   308
     0     1    10    80   440  1540  2612
     0     1    12   120   880  4620 15672 25988
Row n = 3 counts the following patterns:
  (1,1,1)  (1,1,2)  (1,2,1)
           (1,2,2)  (1,2,3)
           (2,1,1)  (1,3,2)
           (2,2,1)  (2,1,2)
                    (2,1,3)
                    (2,3,1)
                    (3,1,2)
                    (3,2,1)
		

Crossrefs

Row sums are A000670.
Column n = k is A005649 (anti-run patterns).
Central coefficients are A337564.
The version for compositions is A333755.
Runs of standard compositions are counted by A124767.
Run-lengths of standard compositions are A333769.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],Length[Split[#]]==k&]],{n,0,5},{k,0,n}]
  • PARI
    \\ here b(n) is A005649.
    b(n) = {sum(k=0, n, stirling(n,k,2)*(k + 1)!)}
    T(n,k)=if(n==0, k==0, b(k-1)*binomial(n-1,k-1)) \\ Andrew Howroyd, Dec 31 2020

Formula

T(n,k) = A005649(k-1) * binomial(n-1,k-1) for k > 0. - Andrew Howroyd, Dec 31 2020