A188920
a(n) is the limiting term of the n-th column of the triangle in A188919.
Original entry on oeis.org
1, 1, 2, 4, 7, 13, 22, 38, 63, 105, 169, 274, 434, 686, 1069, 1660, 2548, 3897, 5906, 8911, 13352, 19917, 29532, 43605, 64056, 93715, 136499, 198059, 286233, 412199, 591455, 845851, 1205687, 1713286, 2427177, 3428611, 4829563, 6784550, 9505840, 13284849
Offset: 0
From _Gus Wiseman_, Aug 20 2024: (Start)
The a(0) = 1 through a(6) = 22 compositions:
() (1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(111) (31) (32) (33)
(112) (41) (42)
(211) (113) (51)
(1111) (122) (114)
(212) (123)
(221) (132)
(311) (213)
(1112) (222)
(2111) (312)
(11111) (321)
(411)
(1113)
(1122)
(2112)
(2211)
(3111)
(11112)
(21111)
(111111)
(End)
- John Tyler Rascoe, Table of n, a(n) for n = 0..200
- A. M. Baxter, Algorithms for Permutation Statistics, Ph. D. Dissertation, Rutgers University, May 2011.
- Andrew M. Baxter and Lara K. Pudwell, Enumeration schemes for dashed patterns, arXiv preprint arXiv:1108.2642 [math.CO], 2011-2012.
- Wikipedia, Permutation pattern.
- Gus Wiseman, Sequences counting and ranking compositions by their leaders (for six types of runs).
For leaders of identical runs we have
A000041.
For weakly increasing leaders we have
A374635.
For leaders of anti-runs we have
A374680.
For leaders of strictly increasing runs we have
A374689.
-
b[u_, o_] := b[u, o] = Expand[If[u + o == 0, 1, Sum[b[u - j, o + j - 1]*x^(o + j - 1), {j, 1, u}] + Sum[If[u == 0, b[u + j - 1, o - j]*x^(o - j), 0], {j, 1, o}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[0, n]];
Take[T[40], 40] (* Jean-François Alcover, Sep 15 2018, after Alois P. Heinz in A188919 *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Greater@@First/@Split[Reverse[#],LessEqual]&]],{n,0,15}] (* Gus Wiseman, Aug 20 2024 *)
- or -
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], !MatchQ[#,{_,y_,z_,_,x_,_}/;x<=yGus Wiseman, Aug 20 2024 *)
-
B_x(i,N) = {my(x='x+O('x^N), f=(x^i)/(1-x^i)*prod(j=i+1,N-i,1/(1-x^j))); f}
A_x(N) = {my(x='x+O('x^N), f=1+sum(i=1,N, B_x(i,N)*prod(j=1,i-1,1+B_x(j,N)))); Vec(f)}
A_x(60) \\ John Tyler Rascoe, Aug 23 2024
A335479
Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,2,3).
Original entry on oeis.org
52, 104, 105, 108, 116, 180, 200, 208, 209, 210, 211, 212, 216, 217, 220, 232, 233, 236, 244, 308, 328, 360, 361, 364, 372, 400, 401, 404, 408, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 432, 433, 434, 435, 436, 440, 441, 444, 456, 464, 465, 466
Offset: 1
The sequence of terms together with the corresponding compositions begins:
52: (1,2,3)
104: (1,2,4)
105: (1,2,3,1)
108: (1,2,1,3)
116: (1,1,2,3)
180: (2,1,2,3)
200: (1,3,4)
208: (1,2,5)
209: (1,2,4,1)
210: (1,2,3,2)
211: (1,2,3,1,1)
212: (1,2,2,3)
216: (1,2,1,4)
217: (1,2,1,3,1)
220: (1,2,1,1,3)
The version counting permutations is
A056986.
Patterns matching this pattern are counted by
A335515 (by length).
Permutations of prime indices matching this pattern are counted by
A335520.
These compositions are counted by
A335514 (by sum).
Non-unimodal compositions are counted by
A115981 and ranked by
A335373.
Combinatory separations are counted by
A269134.
Patterns matched by standard compositions are counted by
A335454.
Minimal patterns avoided by a standard composition are counted by
A335465.
Other permutations:
Cf.
A034691,
A056986,
A108917,
A114994,
A158005,
A238279,
A333224,
A333257,
A334968,
A335456,
A335458.
-
stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,z_,_}/;x
A335480
Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,3,2).
Original entry on oeis.org
50, 98, 101, 102, 114, 178, 194, 196, 197, 198, 202, 203, 205, 206, 210, 226, 229, 230, 242, 306, 324, 354, 357, 358, 370, 386, 388, 389, 390, 393, 394, 395, 396, 397, 398, 402, 404, 405, 406, 407, 410, 411, 413, 414, 418, 421, 422, 434, 450, 452, 453, 454
Offset: 1
The sequence of terms together with the corresponding compositions begins:
50: (1,3,2)
98: (1,4,2)
101: (1,3,2,1)
102: (1,3,1,2)
114: (1,1,3,2)
178: (2,1,3,2)
194: (1,5,2)
196: (1,4,3)
197: (1,4,2,1)
198: (1,4,1,2)
202: (1,3,2,2)
203: (1,3,2,1,1)
205: (1,3,1,2,1)
206: (1,3,1,1,2)
210: (1,2,3,2)
The version counting permutations is
A056986.
Patterns matching this pattern are counted by
A335515 (by length).
Permutations of prime indices matching this pattern are counted by
A335520.
These compositions are counted by
A335514 (by sum).
Non-unimodal compositions are counted by
A115981 and ranked by
A335373.
Permutations matching (1,3,2,4) are counted by
A158009.
Combinatory separations are counted by
A269134.
Patterns matched by standard compositions are counted by
A335454.
Minimal patterns avoided by a standard composition are counted by
A335465.
Other permutations:
Cf.
A034691,
A056986,
A108917,
A114994,
A158005,
A238279,
A333224,
A333257,
A334968,
A335456,
A335458.
-
stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,z_,_}/;x
A375137
Numbers k such that the k-th composition in standard order (row k of A066099) matches the dashed pattern 1-32.
Original entry on oeis.org
50, 98, 101, 114, 178, 194, 196, 197, 202, 203, 210, 226, 229, 242, 306, 324, 354, 357, 370, 386, 388, 389, 393, 394, 395, 402, 404, 405, 406, 407, 418, 421, 434, 450, 452, 453, 458, 459, 466, 482, 485, 498, 562, 610, 613, 626, 644, 649, 690, 706, 708, 709
Offset: 1
Composition 102 is (1,3,1,2), which matches 1-3-2 but not 1-32.
Composition 210 is (1,2,3,2), which matches 1-32 but not 132.
Composition 358 is (2,1,3,1,2), which matches 2-3-1 and 1-3-2 but not 23-1 or 1-32.
The terms together with corresponding compositions begin:
50: (1,3,2)
98: (1,4,2)
101: (1,3,2,1)
114: (1,1,3,2)
178: (2,1,3,2)
194: (1,5,2)
196: (1,4,3)
197: (1,4,2,1)
202: (1,3,2,2)
203: (1,3,2,1,1)
210: (1,2,3,2)
226: (1,1,4,2)
229: (1,1,3,2,1)
242: (1,1,1,3,2)
The complement is too dense, but counted by
A189076.
Compositions of this type are counted by
A374636.
For leaders of strictly increasing runs we have
A375139, counted by
A375135.
All of the following pertain to compositions in standard order:
- Constant compositions are
A272919.
Cf.
A056823,
A106356,
A188919,
A238343,
A333213,
A373948,
A373953,
A374634,
A374635,
A374637,
A375123,
A375296.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],MatchQ[stc[#],{_,x_,_,z_,y_,_}/;x
A335483
Numbers k such that the k-th composition in standard order (A066099) matches the pattern (3,1,2).
Original entry on oeis.org
38, 70, 77, 78, 102, 134, 140, 141, 142, 150, 154, 155, 157, 158, 166, 198, 205, 206, 230, 262, 268, 269, 270, 276, 278, 281, 282, 283, 284, 285, 286, 294, 301, 302, 306, 308, 309, 310, 311, 314, 315, 317, 318, 326, 333, 334, 358, 390, 396, 397, 398, 406, 410
Offset: 1
The sequence of terms together with the corresponding compositions begins:
38: (3,1,2)
70: (4,1,2)
77: (3,1,2,1)
78: (3,1,1,2)
102: (1,3,1,2)
134: (5,1,2)
140: (4,1,3)
141: (4,1,2,1)
142: (4,1,1,2)
150: (3,2,1,2)
154: (3,1,2,2)
155: (3,1,2,1,1)
157: (3,1,1,2,1)
158: (3,1,1,1,2)
166: (2,3,1,2)
The version counting permutations is
A056986.
Patterns matching this pattern are counted by
A335515 (by length).
Permutations of prime indices matching this pattern are counted by
A335520.
These compositions are counted by
A335514 (by sum).
Non-unimodal compositions are counted by
A115981 and ranked by
A335373.
Permutations matching (1,3,2,4) are counted by
A158009.
Combinatory separations are counted by
A269134.
Patterns matched by standard compositions are counted by
A335454.
Minimal patterns avoided by a standard composition are counted by
A335465.
Other permutations:
Cf.
A034691,
A056986,
A108917,
A114994,
A158005,
A238279,
A333224,
A333257,
A334968,
A335456,
A335458.
-
stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,z_,_}/;y
A375138
Numbers k such that the k-th composition in standard order (row k of A066099) matches the dashed pattern 23-1.
Original entry on oeis.org
41, 81, 83, 105, 145, 161, 163, 165, 166, 167, 169, 209, 211, 233, 289, 290, 291, 297, 321, 323, 325, 326, 327, 329, 331, 332, 333, 334, 335, 337, 339, 361, 401, 417, 419, 421, 422, 423, 425, 465, 467, 489, 545, 553, 577, 578, 579, 581, 582, 583, 593, 595, 617
Offset: 1
Composition 89 is (2,1,3,1), which matches 2-3-1 but not 23-1.
Composition 165 is (2,3,2,1), which matches 23-1 but not 231.
Composition 358 is (2,1,3,1,2), which matches 2-3-1 and 1-3-2 but not 23-1 or 1-32.
The sequence together with corresponding compositions begins:
41: (2,3,1)
81: (2,4,1)
83: (2,3,1,1)
105: (1,2,3,1)
145: (3,4,1)
161: (2,5,1)
163: (2,4,1,1)
165: (2,3,2,1)
166: (2,3,1,2)
167: (2,3,1,1,1)
169: (2,2,3,1)
209: (1,2,4,1)
211: (1,2,3,1,1)
233: (1,1,2,3,1)
The complement is too dense, but counted by
A189076.
Compositions of this type are counted by
A374636.
All of the following pertain to compositions in standard order:
- Constant compositions are
A272919.
Cf.
A056823,
A106356,
A188919,
A238343,
A333213,
A335466,
A373948,
A373953,
A374633,
A375123,
A375139,
A374768.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],MatchQ[stc[#],{_,y_,z_,_,x_,_}/;x
A335481
Numbers k such that the k-th composition in standard order (A066099) matches the pattern (2,1,3).
Original entry on oeis.org
44, 88, 89, 92, 108, 152, 172, 176, 177, 178, 179, 180, 184, 185, 188, 216, 217, 220, 236, 296, 300, 304, 305, 312, 332, 344, 345, 348, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 364, 368, 369, 370, 371, 372, 376, 377, 380, 408, 428, 432, 433, 434, 435
Offset: 1
The sequence of terms together with the corresponding compositions begins:
44: (2,1,3)
88: (2,1,4)
89: (2,1,3,1)
92: (2,1,1,3)
108: (1,2,1,3)
152: (3,1,4)
172: (2,2,1,3)
176: (2,1,5)
177: (2,1,4,1)
178: (2,1,3,2)
179: (2,1,3,1,1)
180: (2,1,2,3)
184: (2,1,1,4)
185: (2,1,1,3,1)
188: (2,1,1,1,3)
The version counting permutations is
A056986.
Patterns matching this pattern are counted by
A335515 (by length).
Permutations of prime indices matching this pattern are counted by
A335520.
These compositions are counted by
A335514 (by sum).
Non-unimodal compositions are counted by
A115981 and ranked by
A335373.
Permutations matching (1,3,2,4) are counted by
A158009.
Combinatory separations are counted by
A269134.
Patterns matched by standard compositions are counted by
A335454.
Minimal patterns avoided by a standard composition are counted by
A335465.
Other permutations:
Cf.
A034691,
A056986,
A108917,
A114994,
A158005,
A238279,
A333224,
A333257,
A334968,
A335456,
A335458.
-
stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,z_,_}/;y
A335484
Numbers k such that the k-th composition in standard order (A066099) matches the pattern (3,2,1).
Original entry on oeis.org
37, 69, 75, 77, 101, 133, 137, 139, 141, 149, 150, 151, 155, 157, 165, 197, 203, 205, 229, 261, 265, 267, 269, 274, 275, 277, 278, 279, 281, 283, 285, 293, 297, 299, 300, 301, 302, 303, 309, 310, 311, 315, 317, 325, 331, 333, 357, 389, 393, 395, 397, 405, 406
Offset: 1
The sequence of terms together with the corresponding compositions begins:
37: (3,2,1)
69: (4,2,1)
75: (3,2,1,1)
77: (3,1,2,1)
101: (1,3,2,1)
133: (5,2,1)
137: (4,3,1)
139: (4,2,1,1)
141: (4,1,2,1)
149: (3,2,2,1)
150: (3,2,1,2)
151: (3,2,1,1,1)
155: (3,1,2,1,1)
157: (3,1,1,2,1)
165: (2,3,2,1)
The version counting permutations is
A056986.
Patterns matching this pattern are counted by
A335515 (by length).
Permutations of prime indices matching this pattern are counted by
A335520.
These compositions are counted by
A335514 (by sum).
Non-unimodal compositions are counted by
A115981 and ranked by
A335373.
Permutations matching (1,3,2,4) are counted by
A158009.
Combinatory separations are counted by
A269134.
Patterns matched by standard compositions are counted by
A335454.
Minimal patterns avoided by a standard composition are counted by
A335465.
Other permutations:
Cf.
A034691,
A056986,
A108917,
A114994,
A158005,
A238279,
A333224,
A333257,
A334968,
A335456,
A335458.
-
stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,z_,_}/;z
A375295
Numbers k such that the leaders of maximal weakly increasing runs in the k-th composition in standard order (row k of A066099) are not strictly decreasing.
Original entry on oeis.org
13, 25, 27, 29, 45, 49, 50, 51, 53, 54, 55, 57, 59, 61, 77, 82, 89, 91, 93, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121, 123, 125, 141, 153, 155, 157, 162, 165, 173, 177, 178, 179, 181, 182, 183, 185, 187, 189
Offset: 1
The sequence together with corresponding compositions begins:
13: (1,2,1)
25: (1,3,1)
27: (1,2,1,1)
29: (1,1,2,1)
45: (2,1,2,1)
49: (1,4,1)
50: (1,3,2)
51: (1,3,1,1)
53: (1,2,2,1)
54: (1,2,1,2)
55: (1,2,1,1,1)
57: (1,1,3,1)
59: (1,1,2,1,1)
61: (1,1,1,2,1)
77: (3,1,2,1)
82: (2,3,2)
89: (2,1,3,1)
91: (2,1,2,1,1)
93: (2,1,1,2,1)
For leaders of identical runs we have
A335485.
A374637 counts compositions by sum of leaders of weakly increasing runs.
All of the following pertain to compositions in standard order:
- Constant compositions are
A272919.
Cf.
A056823,
A106356,
A188919,
A189076,
A238343,
A261982,
A333213,
A335480,
A335482,
A373948,
A374746,
A374768,
A375123.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],!Greater@@First/@Split[stc[#],LessEqual]&]
- or -
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],MatchQ[stc[#],{_,x_,_,z_,y_,_}/;x<=y
A375296
Numbers k such that the leaders of maximal weakly increasing runs in the reverse of the k-th composition in standard order (row k of A228351) are not strictly decreasing.
Original entry on oeis.org
13, 25, 27, 29, 41, 45, 49, 51, 53, 54, 55, 57, 59, 61, 77, 81, 82, 83, 89, 91, 93, 97, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 115, 117, 118, 119, 121, 123, 125, 141, 145, 153, 155, 157, 161, 162, 163, 165, 166, 167, 169, 173, 177, 179, 181, 182
Offset: 1
The sequence together with corresponding compositions begins:
13: (1,2,1)
25: (1,3,1)
27: (1,2,1,1)
29: (1,1,2,1)
41: (2,3,1)
45: (2,1,2,1)
49: (1,4,1)
51: (1,3,1,1)
53: (1,2,2,1)
54: (1,2,1,2)
55: (1,2,1,1,1)
57: (1,1,3,1)
59: (1,1,2,1,1)
61: (1,1,1,2,1)
A374637 counts compositions by sum of leaders of weakly increasing runs.
All of the following pertain to compositions in standard order:
- Constant compositions are
A272919.
Cf.
A056823,
A106356,
A188919,
A189076,
A238343,
A333213,
A335480,
A335482,
A373948,
A374630,
A374633,
A374768,
A375123.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],!Greater@@First/@Split[Reverse[stc[#]],LessEqual]&]
- or -
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,300],MatchQ[stc[#],{_,y_,z_,_,x_,_}/;x<=y
Showing 1-10 of 11 results.
Comments