A335508 Number of patterns of length n matching the pattern (1,1,1).
0, 0, 0, 1, 9, 91, 993, 12013, 160275, 2347141, 37496163, 649660573, 12142311195, 243626199181, 5224710549243, 119294328993853, 2889836999693355, 74037381200415901, 2000383612949821323, 56850708386783835133, 1695491518035158123115, 52949018580275965241821
Offset: 0
Keywords
Examples
The a(3) = 1 through a(4) = 9 patterns: (1,1,1) (1,1,1,1) (1,1,1,2) (1,1,2,1) (1,2,1,1) (1,2,2,2) (2,1,1,1) (2,1,2,2) (2,2,1,2) (2,2,2,1)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..424
- Wikipedia, Permutation pattern
- Gus Wiseman, Sequences counting and ranking compositions by the patterns they match or avoid.
Crossrefs
The complement A080599 is the avoiding version.
Permutations of prime indices matching this pattern are counted by A335510.
Patterns matching the pattern (1,1) are counted by A019472.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Patterns matching (1,2,3) are counted by A335515.
Cf. A034691, A056986, A232464, A238279, A292884, A333175, A333755, A335451, A335456, A335457, A335458.
Cf. A276922.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add( b(n-i, k)*binomial(n, i), i=1..min(n, k))) end: a:= n-> b(n$2)-b(n, 2): seq(a(n), n=0..21); # Alois P. Heinz, Jan 28 2024
-
Mathematica
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; Table[Length[Select[Join@@Permutations/@allnorm[n],MatchQ[#,{_,x_,_,x_,_,x_,_}]&]],{n,0,6}]
Formula
a(n) = Sum_{k=3..n} A276922(n,k). - Alois P. Heinz, Jan 28 2024
Extensions
a(9)-a(21) from Alois P. Heinz, Jan 28 2024
Comments