cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335534 a(n) = tribonacci(n) modulo Fibonacci(n).

Original entry on oeis.org

0, 0, 1, 2, 4, 7, 0, 3, 10, 26, 60, 130, 38, 173, 485, 175, 977, 273, 2789, 2065, 336, 15149, 22718, 39800, 5226, 54214, 2323, 251416, 418400, 93831, 977776, 1518664, 261912, 5208104, 2557037, 3549042, 21177270, 11203146, 36247269, 87596844, 44950918, 261069681
Offset: 1

Views

Author

Richard Peterson, Jun 12 2020

Keywords

Comments

a(n) is congruent to tribonacci(n) modulo k if Fibonacci(n) is divisible by k, although the converse does not hold.

Examples

			For n=10, since tribonacci(10)=81 and Fibonacci(10)=55, a(10)=81 modulo 55 = 26.
		

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <1|1|1>>^n)[1, 3] mod (<<0|1>, <1|1>>^n)[1, 2]:
    seq(a(n), n=1..45);  # Alois P. Heinz, Aug 19 2020
  • Mathematica
    m = 42; Mod[LinearRecurrence[{1, 1, 1}, {0, 1, 1}, m], Array[Fibonacci, m]] (* Amiram Eldar, Aug 19 2020 *)
  • PARI
    t(n) = ([0, 1, 0; 0, 0, 1; 1, 1, 1]^n)[1, 3]; \\ A000073
    a(n) = t(n) % fibonacci(n); \\ Michel Marcus, Aug 19 2020