A335534 a(n) = tribonacci(n) modulo Fibonacci(n).
0, 0, 1, 2, 4, 7, 0, 3, 10, 26, 60, 130, 38, 173, 485, 175, 977, 273, 2789, 2065, 336, 15149, 22718, 39800, 5226, 54214, 2323, 251416, 418400, 93831, 977776, 1518664, 261912, 5208104, 2557037, 3549042, 21177270, 11203146, 36247269, 87596844, 44950918, 261069681
Offset: 1
Keywords
Examples
For n=10, since tribonacci(10)=81 and Fibonacci(10)=55, a(10)=81 modulo 55 = 26.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2000
Programs
-
Maple
a:= n-> (<<0|1|0>, <0|0|1>, <1|1|1>>^n)[1, 3] mod (<<0|1>, <1|1>>^n)[1, 2]: seq(a(n), n=1..45); # Alois P. Heinz, Aug 19 2020
-
Mathematica
m = 42; Mod[LinearRecurrence[{1, 1, 1}, {0, 1, 1}, m], Array[Fibonacci, m]] (* Amiram Eldar, Aug 19 2020 *)
-
PARI
t(n) = ([0, 1, 0; 0, 0, 1; 1, 1, 1]^n)[1, 3]; \\ A000073 a(n) = t(n) % fibonacci(n); \\ Michel Marcus, Aug 19 2020
Comments