cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335548 Number of compositions of n with at least one non-contiguous value.

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 10, 28, 68, 159, 350, 770, 1642, 3468, 7218, 14870, 30463, 62044, 125818, 254302, 512690, 1031284, 2071858, 4157214, 8334742, 16699103, 33442208, 66947772, 133986940, 268107104, 536404872, 1073082978, 2146555516, 4293665006, 8588112822
Offset: 0

Views

Author

Gus Wiseman, Jul 08 2020

Keywords

Comments

Also the number of compositions of n matching the pattern (1,2,1) or (2,1,2).

Examples

			The a(4) = 1 through a(6) = 10 compositions:
  (121)  (131)   (141)
         (212)   (1131)
         (1121)  (1212)
         (1211)  (1221)
                 (1311)
                 (2112)
                 (2121)
                 (11121)
                 (11211)
                 (12111)
		

Crossrefs

The complement is A274174.
The version for prime indices is A335460.
Anti-run compositions are A003242.
(1,2,1) and (2,1,2)-matching permutations of prime indices are A335462.
(1,2,1)-matching compositions are A335470.
(1,2,1)-avoiding compositions are A335471.
(2,1,2)-matching compositions are A335472.
(2,1,2)-avoiding compositions are A335473.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
           add(b(n-i*j, i-1, p+`if`(j=0, 0, 1)), j=0..n/i)))
        end:
    a:= n-> ceil(2^(n-1))-b(n$2, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jul 09 2020
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[Split[#]]>Length[Union[#]]&]],{n,0,10}]
    (* Second program: *)
    b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i<1, 0,
         Sum[b[n-i*j, i-1, p + If[j == 0, 0, 1]], {j, 0, n/i}]]];
    a[n_] := Ceiling[2^(n-1)] - b[n, n, 0];
    a /@ Range[0, 50] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)

Formula

a(n) = A011782(n) - A274174(n). - Alois P. Heinz, Jul 09 2020

Extensions

More terms from Alois P. Heinz, Jul 09 2020