A335567 Number of distinct positive integer pairs (s,t) such that s <= t < n where neither s nor t divides n.
0, 0, 1, 1, 6, 3, 15, 10, 21, 21, 45, 21, 66, 55, 66, 66, 120, 78, 153, 105, 153, 171, 231, 136, 253, 253, 276, 253, 378, 253, 435, 351, 435, 465, 496, 378, 630, 595, 630, 528, 780, 595, 861, 741, 780, 903, 1035, 741, 1081, 990, 1128, 1081, 1326, 1081, 1326, 1176, 1431
Offset: 1
Examples
a(7) = 15; There are 5 positive integers less than 7 that do not divide 7, {2,3,4,5,6}. From this list, there are 15 ordered pairs, (s,t), such that s <= t < 7. They are (2,2), (2,3), (2,4), (2,5), (2,6), (3,3), (3,4), (3,5), (3,6), (4,4), (4,5), (4,6), (5,5), (5,6) and (6,6). So a(7) = 15.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
a:= n-> (t-> t*(t+1)/2)(n-numtheory[tau](n)): seq(a(n), n=1..60); # Alois P. Heinz, Nov 19 2021
-
Mathematica
Table[Sum[Sum[(Ceiling[n/k] - Floor[n/k]) (Ceiling[n/i] - Floor[n/i]), {i, k}], {k, n}], {n, 100}] a[n_] := Module[{m = n - DivisorSigma[0, n]}, m*(m+1)/2]; Array[a, 100] (* Amiram Eldar, Feb 03 2025 *)
-
PARI
a(n) = {my(m = n - numdiv(n)); m*(m+1)/2;} \\ Amiram Eldar, Feb 03 2025
-
Python
from sympy import divisor_count def A335567(n): m = divisor_count(n) return (n-m)*(n-m+1)//2 # Chai Wah Wu, Nov 19 2021
Formula
a(n) = Sum_{k=1..n} Sum_{i=1..k} (ceiling(n/k) - floor(n/k)) * (ceiling(n/i) - floor(n/i)).
a(p) = (p-1)*(p-2)/2 for primes p. - Wesley Ivan Hurt, Nov 28 2021