cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335567 Number of distinct positive integer pairs (s,t) such that s <= t < n where neither s nor t divides n.

Original entry on oeis.org

0, 0, 1, 1, 6, 3, 15, 10, 21, 21, 45, 21, 66, 55, 66, 66, 120, 78, 153, 105, 153, 171, 231, 136, 253, 253, 276, 253, 378, 253, 435, 351, 435, 465, 496, 378, 630, 595, 630, 528, 780, 595, 861, 741, 780, 903, 1035, 741, 1081, 990, 1128, 1081, 1326, 1081, 1326, 1176, 1431
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 14 2020

Keywords

Examples

			a(7) = 15; There are 5 positive integers less than 7 that do not divide 7, {2,3,4,5,6}. From this list, there are 15 ordered pairs, (s,t), such that s <= t < 7. They are (2,2), (2,3), (2,4), (2,5), (2,6), (3,3), (3,4), (3,5), (3,6), (4,4), (4,5), (4,6), (5,5), (5,6) and (6,6). So a(7) = 15.
		

Crossrefs

Programs

  • Maple
    a:= n-> (t-> t*(t+1)/2)(n-numtheory[tau](n)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Nov 19 2021
  • Mathematica
    Table[Sum[Sum[(Ceiling[n/k] - Floor[n/k]) (Ceiling[n/i] - Floor[n/i]), {i, k}], {k, n}], {n, 100}]
    a[n_] := Module[{m = n - DivisorSigma[0, n]}, m*(m+1)/2]; Array[a, 100] (* Amiram Eldar, Feb 03 2025 *)
  • PARI
    a(n) = {my(m = n - numdiv(n)); m*(m+1)/2;} \\ Amiram Eldar, Feb 03 2025
  • Python
    from sympy import divisor_count
    def A335567(n):
        m = divisor_count(n)
        return (n-m)*(n-m+1)//2 # Chai Wah Wu, Nov 19 2021
    

Formula

a(n) = Sum_{k=1..n} Sum_{i=1..k} (ceiling(n/k) - floor(n/k)) * (ceiling(n/i) - floor(n/i)).
a(n) = (n-A000005(n))*(n-A000005(n)+1)/2. - Chai Wah Wu, Nov 19 2021
a(n) = A000217(A049820(n)). - Alois P. Heinz, Nov 19 2021
a(p) = (p-1)*(p-2)/2 for primes p. - Wesley Ivan Hurt, Nov 28 2021