cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335586 Number of domino tilings of a 2n X 2n toroidal grid.

Original entry on oeis.org

1, 8, 272, 90176, 311853312, 11203604497408, 4161957566985310208, 15954943354032349049274368, 630665326543010382995142219988992, 256955886436135671144699761794930161483776
Offset: 0

Views

Author

Drake Thomas, Jan 26 2021

Keywords

Comments

For n > 1, number of perfect matchings of the graph C_2n X C_2n.

Examples

			For n = 1, there are a(1) = 8 tilings (see the Links section for a diagram).
		

Crossrefs

Number of perfect matchings of the graph C_2m X C_n: A162484 (m=1), A220864 (m=2), A232804 (m=3), A253678 (m=4), A281679 (m=5), A309018 (m=6).

Programs

  • PARI
    default(realprecision, 120);
    b(n) = round(prod(j=1, n-1, prod(k=1, n, 4*sin(j*Pi/n)^2+4*sin((2*k-1)*Pi/(2*n))^2)));
    c(n) = round(prod(j=1, n, prod(k=1, n, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/(2*n))^2)));
    a(n) = if(n==0, 1, 4*b(n)+c(n)/2); \\ Seiichi Manyama, Feb 13 2021

Formula

a(n) = 4 * Product_{j=1..n-1} Product_{k=1..n} (4*sin(j*Pi/n)^2 + 4*sin((2*k-1)*Pi/(2*n))^2) + 1/2 * Product_{1<=j,k<=n} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/(2*n))^2) = 4 * A341478(n)^2 + A341479(n)/2 for n > 0. - Seiichi Manyama, Feb 13 2021
a(n) ~ (1 + sqrt(2)) * exp(4*G*n^2/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Feb 14 2021

Extensions

More terms from Seiichi Manyama, Feb 13 2021