A335588 Number of n-step n-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1.
1, 1, 3, 13, 81, 686, 7525, 102173, 1655241, 31119382, 665254791, 15927737772, 422179410829, 12275253219828, 388591800808471, 13309116622983421, 490515662121994785, 19362705183912628838, 815258217524407553989, 36479395828632610279316, 1729012534789121191076601
Offset: 0
Examples
a(2) = 3: [(0,0),(1,1),(2,2)], [(0,0),(1,1),(0,1)], [(0,0),(1,1),(1,0)].
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..65 (terms 0..55 from Alois P. Heinz)
Crossrefs
Main diagonal of A335570.
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0, 1, b(n-1, map(x-> x+1, l))+add( `if`(l[i]>0, b(n-1, sort(subsop(i=l[i]-1, l))), 0), i=1..nops(l))) end: a:= n-> b(n, [0$n]): seq(a(n), n=0..23);
-
Mathematica
b[n_, l_] := b[n, l] = If[n == 0, 1, b[n - 1, l + 1] + Sum[If[l[[i]] > 0, b[n - 1, Sort[ReplacePart[l, i -> l[[i]] - 1]]], 0], {i, 1, Length[l]}]]; a[n_] := b[n, Table[0, {n}]]; a /@ Range[0, 23] (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *)
Formula
a(n) = A335570(n,n).
a(n) == 1 (mod n) for n >= 2.