cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335609 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a K(4,n) (with n at least 2) complete bipartite graph missing one edge.

Original entry on oeis.org

26, 896, 18458, 316928, 5049626, 77860736, 1182865178, 17848076288, 268458094106, 4032033838976, 60516655913498, 908002911016448, 13621815273480986, 204339630665964416, 3065181271854043418, 45978326763617681408, 689679155263179402266, 10345217105634885213056
Offset: 2

Views

Author

Steven Schlicker, Jun 15 2020

Keywords

Comments

Number of {0,1} 4 X n matrices (with n at least 2) with one fixed zero entry and no zero rows or columns.
Number of edge covers of a K(4,n) complete bipartite graph (with n at least 2) missing one edge.

Examples

			For n = 3, a(2) = 26.
		

Crossrefs

Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Programs

  • Mathematica
    Array[7*15^(# - 1) - 16*7^(# - 1) + 4*3^# - 3 &, 18, 2] (* Michael De Vlieger, Jun 22 2020 *)
    LinearRecurrence[{26,-196,486,-315},{26,896,18458,316928},20] (* Harvey P. Dale, Aug 21 2021 *)
  • PARI
    Vec(2*x^2*(13 + 110*x + 129*x^2) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)) + O(x^20)) \\ Colin Barker, Jun 23 2020

Formula

a(n) = 7*15^(n-1) - 16*7^(n-1) + 4*3^n - 3.
From Colin Barker, Jun 23 2020: (Start)
G.f.: 2*x^2*(13 + 110*x + 129*x^2) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)).
a(n) = 26*a(n-1) - 196*a(n-2) + 486*a(n-3) - 315*a(n-4) for n>5.
(End)