cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A247551 Decimal expansion of Product_{k>=2} 1/(1-1/k!).

Original entry on oeis.org

2, 5, 2, 9, 4, 7, 7, 4, 7, 2, 0, 7, 9, 1, 5, 2, 6, 4, 8, 1, 8, 0, 1, 1, 6, 1, 5, 4, 2, 5, 3, 9, 5, 4, 2, 4, 1, 1, 7, 8, 7, 0, 2, 3, 9, 4, 8, 4, 5, 9, 9, 7, 3, 3, 7, 5, 8, 4, 9, 3, 4, 9, 8, 2, 5, 0, 0, 2, 1, 1, 8, 7, 8, 0, 0, 8, 6, 6, 9, 9, 1, 2, 1, 9, 9, 8, 8, 3, 6, 4, 6, 2, 5, 2, 6, 1, 4, 9, 5, 5, 1, 6, 4, 3, 2
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 19 2014

Keywords

Examples

			2.5294774720791526481801161542539542411787023948459973375849349825...
		

Crossrefs

Programs

  • Maple
    evalf(1/product(1-1/k!,k=2..infinity),100); # Vaclav Kotesovec, Sep 19 2014
  • Mathematica
    digits = 105;
    RealDigits[NProduct[1/(1-1/k!), {k, 2, Infinity}, WorkingPrecision -> digits+10, NProductFactors -> digits], 10, digits][[1]] (* Jean-François Alcover, Nov 02 2020 *)
  • PARI
    default(realprecision,150); 1/prodinf(k=2,1 - 1/k!) \\ Vaclav Kotesovec, Sep 21 2014

Formula

Product_{k>=2} 1/(1-1/k!).
Equals lim_{n -> oo} A005651(n) / n!.
Equals 1/A282529. - Amiram Eldar, Sep 15 2023

A335636 Expansion of e.g.f. Product_{k>0} 1/(1 - tan(x)^k / k).

Original entry on oeis.org

1, 1, 3, 13, 80, 560, 4972, 48060, 552632, 6813560, 95846728, 1435488184, 23855755040, 419889384096, 8048166402304, 162616435301824, 3531256457687168, 80497793591765120, 1953028123616286592, 49561115477458450560, 1328614915154244276224, 37134707962379971432448
Offset: 0

Views

Author

Seiichi Manyama, Oct 03 2020

Keywords

Crossrefs

Programs

  • Mathematica
    max = 21; Range[0, max]! * CoefficientList[Series[Product[1/(1 - Tan[x]^k/k), {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Oct 03 2020 *)
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(1/prod(k=1, N, 1-tan(x)^k/k)))
    
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(exp(sum(i=1, N, sum(j=1, N\i, tan(x)^(i*j)/(i*j^i))))))

Formula

E.g.f.: exp( Sum_{i>0} Sum_{j>0} tan(x)^(i*j)/(i*j^i) ).
Conjecture: a(n) ~ A080130 * n * 2^(2*n+2) * n! / Pi^(n+2). - Vaclav Kotesovec, Oct 04 2020

A335642 Expansion of e.g.f. Product_{k>0} 1/(1 - sin(x)^k / k!).

Original entry on oeis.org

1, 1, 3, 9, 35, 147, 710, 3780, 21391, 136063, 932190, 6887232, 55902274, 497726270, 4711586833, 47692742905, 528539419087, 6093676850975, 73010887114406, 943925266298096, 12740929019736310, 175037826035276730, 2561985529052306447, 39817440376814520907, 622315443336146270858
Offset: 0

Views

Author

Seiichi Manyama, Oct 03 2020

Keywords

Comments

a(74) is negative. - Vaclav Kotesovec, Oct 04 2020

Crossrefs

Programs

  • Mathematica
    max = 24; Range[0, max]! * CoefficientList[Series[Product[1/(1 - Sin[x]^k/k!), {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Oct 04 2020 *)
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(1/prod(k=1, N, 1-sin(x)^k/k!)))
    
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(exp(sum(i=1, N, sum(j=1, N\i, sin(x)^(i*j)/(i*j!^i))))))

Formula

E.g.f.: exp( Sum_{i>0} Sum_{j>0} sin(x)^(i*j)/(i*(j!)^i) ).

A336046 Expansion of e.g.f. Product_{k>0} (1 + tan(x)^k / k!).

Original entry on oeis.org

1, 1, 1, 6, 13, 112, 418, 4025, 23773, 237256, 2022526, 20878803, 236842838, 2567676659, 36410743437, 419956671339, 7116408372829, 87937527652592, 1724613303370022, 22889017703271151, 507452662263001722, 7236316297556572973, 178035555403835890935, 2728137658918521763201
Offset: 0

Views

Author

Seiichi Manyama, Oct 03 2020

Keywords

Crossrefs

Programs

  • Mathematica
    max = 23; Range[0, max]! * CoefficientList[Series[Product[1 + Tan[x]^k/k!, {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Oct 04 2020 *)
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, 1+tan(x)^k/k!)))
    
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(exp(sum(i=1, N, sum(j=1, N\i, (-1)^(i+1)*tan(x)^(i*j)/(i*j!^i))))))

Formula

E.g.f.: exp( Sum_{i>0} Sum_{j>0} (-1)^(i+1)*tan(x)^(i*j)/(i*(j!)^i) ).
Showing 1-4 of 4 results.