cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335645 Smallest palindrome with exactly n distinct prime factors.

Original entry on oeis.org

1, 2, 6, 66, 858, 6006, 222222, 20522502, 244868442, 6172882716, 231645546132, 49795711759794, 2415957997595142, 495677121121776594, 22181673755737618122, 5521159517777159511255, 477552751050050157255774, 200345274602020206472543002
Offset: 0

Views

Author

Michael S. Branicky, Oct 02 2020

Keywords

Comments

max{A002110(n), A076886(n), A239696(n)} <= a(n) <= A046399(n).
No more terms with less than 17 digits.
Next term: 10^16 <= a(13) <= 495677121121776594.

Examples

			a(3) = 66 because 66 is the smallest palindromic number with 3 distinct prime factors: 2*3*11.
		

Crossrefs

Subsequence of A002113.

Programs

  • PARI
    omega_palindromes(A, B, n) = A=max(A, vecprod(primes(n))); (f(m, p, j) = my(list=List()); forprime(q=p, sqrtnint(B\m, j), my(v=m*q); if(q == 5 && v%2 == 0, next); while(v <= B, if(j==1, if(v>=A && fromdigits(Vecrev(digits(v))) == v, listput(list, v)), if(v*(q+1) <= B, list=concat(list, f(v, q+1, j-1)))); v *= q)); list); vecsort(Vec(f(1, 2, n)));
    a(n) = if(n==0, return(1)); my(x=vecprod(primes(n)), y=2*x); while(1, my(v=omega_palindromes(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Feb 05 2023
  • Python
    from sympy import factorint
    def A335645(n):
      d = 1
      while True:
        half = (d+1)//2
        for left in range(10**(half-1), 10**half):
          strleft = str(left)
          if d%2 == 0:
            m = int(strleft + strleft[::-1])
          else:
            m = int(strleft + (strleft[:-1])[::-1])
          if len(factorint(m)) == n:
            return m
        d += 1
    print([A335645(n) for n in range(8)]) # Michael S. Branicky, Oct 02 2020
    

Extensions

a(13) from Michael S. Branicky and David A. Corneth, Oct 03 2020
a(14) from David A. Corneth, Oct 03 2020
a(15) from Daniel Suteu, Feb 05 2023
a(16) from Michael S. Branicky, Feb 06 2023
a(17) from Michael S. Branicky, Feb 23 2023