cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335651 a(n) is the sum, over all overpartitions of n, of the non-overlined parts.

Original entry on oeis.org

1, 5, 14, 35, 74, 150, 280, 505, 875, 1470, 2402, 3850, 6034, 9300, 14120, 21131, 31220, 45619, 65930, 94374, 133892, 188350, 262904, 364350, 501459, 685762, 932200, 1259944, 1693750, 2265380, 3015152, 3994585, 5268988, 6920700, 9053748, 11798873, 15319610, 19820738, 25557560
Offset: 1

Views

Author

Jeremy Lovejoy, Jun 17 2020

Keywords

Examples

			The 8 overpartitions of 3 are [3], [3'], [2,1], [2,1'], [2',1], [2',1'], [1,1,1], [1',1,1], and so a(3) = 14.
		

Crossrefs

Cf. A305102 (number of non-overlined parts).

Programs

  • PARI
    my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, k*q^k/(1-q^k)) ) \\ Joerg Arndt, Jun 18 2020

Formula

G.f.: (Product_{k>=1} (1+q^k)/(1-q^k)) * Sum_{n>=1} n*q^n/(1-q^n).
a(n) = A235793(n) - A335666(n). - Omar E. Pol, Jun 17 2020