A335669 Odd composite integers m such that A006497(m) == 3 (mod m).
33, 65, 119, 273, 377, 385, 533, 561, 649, 1105, 1189, 1441, 2065, 2289, 2465, 2849, 4187, 4641, 6545, 6721, 11921, 12871, 13281, 14041, 15457, 16109, 18241, 19201, 22049, 23479, 24769, 25345, 28421, 30745, 31631, 34997, 38121, 38503, 41441, 45961, 46761, 48577
Offset: 1
Keywords
Examples
33 is the first odd composite integer for which we have A006497(33) = 132742316047301964 == 3 (mod 33).
References
- D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..500
- D. Andrica and O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, preprint for Mediterr. J. Math. 18, 47 (2021).
Programs
-
Mathematica
Select[Range[3, 50000, 2], CompositeQ[#] && Divisible[LucasL[#, 3] - 3, #] &] (* Amiram Eldar, Jun 18 2020 *)
-
PARI
is(m) = m%2 && !isprime(m) && [2, 3]*([0, 1; 1, 3]^m)[, 1]%m==3; \\ Jinyuan Wang, Jun 17 2020
Extensions
More terms from Jinyuan Wang, Jun 17 2020
Comments