cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335669 Odd composite integers m such that A006497(m) == 3 (mod m).

Original entry on oeis.org

33, 65, 119, 273, 377, 385, 533, 561, 649, 1105, 1189, 1441, 2065, 2289, 2465, 2849, 4187, 4641, 6545, 6721, 11921, 12871, 13281, 14041, 15457, 16109, 18241, 19201, 22049, 23479, 24769, 25345, 28421, 30745, 31631, 34997, 38121, 38503, 41441, 45961, 46761, 48577
Offset: 1

Views

Author

Ovidiu Bagdasar, Jun 17 2020

Keywords

Comments

If p is a prime, then A006497(p) == 3 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=3, b=-1, V(n) recovers the sequence A006497(n) (bronze Fibonacci numbers).

Examples

			33 is the first odd composite integer for which we have A006497(33) = 132742316047301964 == 3 (mod 33).
		

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A006497, A005845 (a=1), A330276 (a=2), A335670 (a=4), A335671 (a=5).

Programs

  • Mathematica
    Select[Range[3, 50000, 2], CompositeQ[#] && Divisible[LucasL[#, 3] - 3, #] &] (* Amiram Eldar, Jun 18 2020 *)
  • PARI
    is(m) = m%2 && !isprime(m) && [2, 3]*([0, 1; 1, 3]^m)[, 1]%m==3; \\ Jinyuan Wang, Jun 17 2020

Extensions

More terms from Jinyuan Wang, Jun 17 2020