A335671 Odd composite integers m such that A087130(m) == 5 (mod m).
9, 27, 65, 121, 145, 377, 385, 533, 1035, 1189, 1305, 1885, 2233, 2465, 4081, 5089, 5993, 6409, 6721, 7107, 10877, 11281, 11285, 13281, 13369, 13741, 13833, 14705, 15457, 16721, 17545, 18901, 19601, 19951, 20329, 20705, 22881, 24769, 25345, 26599, 26937, 28741, 29161
Offset: 1
Keywords
Examples
9 is the first odd composite integer for which A087130(9)=2744420==5 (mod 9).
References
- D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
- D. Andrica and O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, preprint for Mediterr. J. Math. 18, 47 (2021).
Programs
-
Maple
M:= <<5|1>,<1|0>>: f:= proc(n) uses LinearAlgebra:-Modular; local A; A:= Mod(n,M,integer[8]); A:= MatrixPower(n,A,n); 2*A[1,1] - 5*A[1,2] mod n; end proc: select(t -> f(t) = 5 and not isprime(t), [seq(i,i=3..10^5,2)]); # Robert Israel, Jun 19 2020
-
Mathematica
Select[Range[3, 30000, 2], CompositeQ[#] && Divisible[LucasL[#, 5] - 5, #] &] (* Amiram Eldar, Jun 18 2020 *)
Extensions
More terms from Jinyuan Wang, Jun 17 2020
Comments