A335709 a(n) is the smallest Niven number that has exactly n divisors or -1 if no such number exists.
1, 2, 4, 6, 81, 12, -1, 24, 36, 48, 59049, 60, -1, 192, 144, 120, 43046721, 180, 43472473122830653562489222659449707872441, 240, 576, 3072, 191540580003116921429323712183642218614831262597249, 360, 1296, 94208, 900, 960, -1, 720, -1, 840, 9216, 720896, 5184, 1260
Offset: 1
Examples
The number 81 = 3^4 is the smallest with 5 divisors and is a Niven number, so a(5) = 81.
Programs
-
Magma
niven:=func
; a:=[]; for n in [1..36] do if not IsPrime(n) then k:=1; while not niven(k) or #Divisors(k) ne n do k:=k+1; end while; Append(~a,k); else q:=2; while not niven(q^(n-1)) and q le (9*(n-1)*Log(10,q)+9) do q:=NextPrime(q); end while; if niven(q^(n-1)) then Append(~a,q^(n-1)); else Append(~a,-1); end if; end if; end for; a;
Comments