cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335764 Decimal expansion of Sum_{k>=1} sigma(k)/(k*2^k) where sigma(k) is the sum of divisors of k (A000203).

Original entry on oeis.org

1, 2, 4, 2, 0, 6, 2, 0, 9, 4, 8, 1, 2, 4, 1, 4, 9, 4, 5, 7, 9, 7, 8, 4, 5, 4, 8, 1, 8, 9, 4, 6, 2, 9, 6, 6, 8, 9, 7, 3, 4, 0, 3, 9, 7, 8, 2, 5, 0, 4, 2, 5, 8, 8, 4, 6, 2, 7, 1, 3, 8, 1, 6, 7, 2, 5, 3, 3, 9, 1, 1, 8, 4, 4, 7, 0, 6, 2, 8, 8, 4, 6, 5, 8, 2, 4, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 21 2020

Keywords

Examples

			1.242062094812414945797845481894629668973403978250425...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[1/n/(2^n - 1), {n, 1, 500}], 10, 100][[1]]
    RealDigits[-Log[QPochhammer[1/2]], 10, 120][[1]] (* Vaclav Kotesovec, Feb 18 2021 *)
  • PARI
    suminf(x = 1, sigma(x)/(x*2^x)) \\ David A. Corneth, Jun 21 2020

Formula

Equals Sum_{k>=1} (A017665(k)/A017666(k))/2^k.
Equals Sum_{k>=1} 1/(k*(2^k - 1)) = Sum_{k>=1} 1/A066524(k).
Equals -Sum_{k>=1} log(1-2^(-k)).
Equals -log(A048651). - Amiram Eldar, Feb 19 2022