cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A048651 Decimal expansion of Product_{k >= 1} (1 - 1/2^k).

Original entry on oeis.org

2, 8, 8, 7, 8, 8, 0, 9, 5, 0, 8, 6, 6, 0, 2, 4, 2, 1, 2, 7, 8, 8, 9, 9, 7, 2, 1, 9, 2, 9, 2, 3, 0, 7, 8, 0, 0, 8, 8, 9, 1, 1, 9, 0, 4, 8, 4, 0, 6, 8, 5, 7, 8, 4, 1, 1, 4, 7, 4, 1, 0, 6, 6, 1, 8, 4, 9, 0, 2, 2, 4, 0, 9, 0, 6, 8, 4, 7, 0, 1, 2, 5, 7, 0, 2, 4, 2, 8, 4, 3, 1, 9, 3, 3, 4, 8, 0, 7, 8, 2
Offset: 0

Views

Author

Keywords

Comments

This is the limiting probability that a large random binary matrix is nonsingular (cf. A002884).
This constant is very close to 2^(13/24) * sqrt(Pi/log(2)) / exp(Pi^2/(6*log(2))) = 0.288788095086602421278899775042039398383022429351580356839... - Vaclav Kotesovec, Aug 21 2018
This constant is irrational (see Penn link). - Paolo Xausa, Dec 09 2024

Examples

			(1/2)*(3/4)*(7/8)*(15/16)*... = 0.288788095086602421278899721929230780088911904840685784114741...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 318, 354-361.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Product[1 - 1/2^i, {i, 100}], 10, 111][[1]] (* Robert G. Wilson v, May 25 2011 *)
    RealDigits[QPochhammer[1/2], 10, 100][[1]] (* Jean-François Alcover, Nov 18 2015 *)
  • PARI
    default(realprecision, 20080); x=prodinf(k=1, -1/2^k, 1); x*=10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b048651.txt", n, " ", d)); \\ Harry J. Smith, May 07 2009

Formula

exp(-Sum_{k>0} sigma_1(k)/k*2^(-k)) = exp(-Sum_{k>0} A000203(k)/k*2^(-k)). - Hieronymus Fischer, Jul 28 2007
From Hieronymus Fischer, Aug 13 2007: (Start)
Equals lim inf Product_{k=0..floor(log_2(n))} floor(n/2^k)*2^k/n for n->oo.
Equals lim inf A098844(n)/n^(1+floor(log_2(n)))*2^(1/2*(1+floor(log_2(n)))*floor(log_2(n))) for n->oo.
Equals lim inf A098844(n)/n^(1+floor(log_2(n)))*2^A000217(floor(log_2(n))) for n->oo.
Equals lim inf A098844(n)/(n+1)^((1+log_2(n+1))/2) for n->oo.
Equals (1/2)*exp(-Sum_{n>0} 2^(-n)*Sum_{k|n} 1/(k*2^k)). (End)
Limit of A177510(n)/A000079(n-1) as n->infinity (conjecture). - Mats Granvik, Mar 27 2011
Product_{k >= 1} (1-1/2^k) = (1/2; 1/2){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 27 2015
exp(Sum_{n>=1}(1/n/(1 - 2^n))) (according to Mathematica). - Mats Granvik, Sep 07 2016
(Sum_{k>0} (4^k-1)/(Product_{i=1..k} ((4^i-1)*(2*4^i-1))))*2 = 2/7 + 2/(3*7*31) + 2/(3*7*15*31*127)+2/(3*7*15*31*63*127*511) + ... (conjecture). - Werner Schulte, Dec 22 2016
Equals Sum_{k=-oo..oo} (-1)^k/2^((3*k+1)*k/2) (by Euler's pentagonal number theorem). - Amiram Eldar, Aug 13 2020
From Peter Bala, Dec 15 2020: (Start)
Constant C = Sum_{n >= 0} (-1)^n/( Product_{k = 1..n} (2^k - 1) ). The above conjectural result by Schulte follows by adding terms of this series in pairs.
C = (1/2)*Sum_{n >= 0} (-1/2)^n/( Product_{k = 1..n} (2^k - 1) ).
C = (3/8)*Sum_{n >= 0} (-1/4)^n/( Product_{k = 1..n} (2^k - 1) ).
1/C = Sum_{n >= 0} 2^(n*(n-1)/2)/( Product_{k = 1..n} (2^k - 1) ).
C = 1 - Sum_{n >= 0} (1/2)^(n+1)*Product_{k = 1..n} (1 - 1/2^k).
This latter identity generalizes as:
C = Sum_{n >= 0} (1/4)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*C = 1 - Sum_{n >= 0} (1/8)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*7*C = 6 + Sum_{n >= 0} (1/16)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*7*15*C = 91 - Sum_{n >= 0} (1/32)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
and so on, where the sequence [1, 0, 1, 6, 91, ...] is A005327.
(End)
From Amiram Eldar, Feb 19 2022: (Start)
Equals sqrt(2*Pi/log(2)) * exp(log(2)/24 - Pi^2/(6*log(2))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(2))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A005329(n).
Equals exp(-A335764). (End)
Equals 1/A065446. - Hugo Pfoertner, Nov 23 2024

Extensions

Corrected by Hieronymus Fischer, Jul 28 2007

A066524 a(n) = n*(2^n - 1).

Original entry on oeis.org

0, 1, 6, 21, 60, 155, 378, 889, 2040, 4599, 10230, 22517, 49140, 106483, 229362, 491505, 1048560, 2228207, 4718574, 9961453, 20971500, 44040171, 92274666, 192937961, 402653160, 838860775, 1744830438, 3623878629, 7516192740, 15569256419, 32212254690
Offset: 0

Views

Author

Henry Bottomley, Jan 08 2002

Keywords

Comments

a(n)/2^n is the expected value of the cardinality of the generalized union of n randomly selected (with replacement) subsets of [n] where the probability of selection is equal for all subsets. - Geoffrey Critzer, May 18 2009
Form a triangle in which interior members T(i,j) = T(i-1,j-1) + T(i-1,j). The exterior members are given by 1,2,3,...,2*n-1: T(1,1) = n, T(2,1) = n-1, T(3,1) = n-2, ..., T(n,1) = 1 and T(2,2) = n + 1, T(3,3) = n + 2, ..., T(n,n) = 2*n - 1. The sum of all members will reproduce this sequence. For example, with n = 4 the exterior members are 1 to 7: row(1) = 4; row(2) = 3,5; row(3) = 2,8,6; row(4) = 1,10,14,7. The sum of all these members is 60, the fourth term in the sequence. - J. M. Bergot, Oct 16 2012

Examples

			a(4) = 4*(2^4 - 1) = 4*15 = 60.
		

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) + 2^n = A000225(n) * A001477(n) = A036289(n) - A001477(n).
G.f.: x*(1 - 2*x^2)/((1 - x)*(1 - 2*x))^2.
a(n) = n * Sum_{j = 1..n} binomial(n,j), n >= 0. - Zerinvary Lajos, May 10 2007
Row sums of triangles A132751. - Gary W. Adamson, Aug 28 2007
E.g.f.: x*(2*exp(2*x) - exp(x)). From an earlier rewritten comment. - Wolfdieter Lang, Feb 16 2016
Sum_{n>=1} 1/a(n) = A335764. - Amiram Eldar, Jun 23 2020

A335763 Decimal expansion of Sum_{k>=1} sigma_2(k)/2^k where sigma_2(k) is the sum of squares of divisors of k (A001157).

Original entry on oeis.org

7, 0, 9, 9, 2, 8, 5, 1, 7, 8, 8, 9, 0, 9, 0, 7, 1, 1, 4, 0, 3, 3, 1, 2, 5, 0, 2, 2, 1, 6, 4, 7, 5, 3, 6, 6, 3, 1, 5, 7, 6, 0, 8, 8, 3, 3, 2, 1, 1, 8, 9, 5, 9, 7, 8, 8, 3, 9, 2, 3, 7, 7, 4, 2, 8, 8, 9, 1, 2, 8, 8, 9, 1, 1, 2, 2, 6, 4, 5, 8, 7, 1, 7, 3, 5, 5, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 21 2020

Keywords

Examples

			7.099285178890907114033125022164753663157608833211895...
		

Crossrefs

Programs

  • Maple
    evalf(add( (1/2)^(n^2)*( n^2*(8^n) - ((n-1)^2 - 2)*4^n - ((n+1)^2 - 2)*(2^n) + n^2 )/(2^n - 1)^3, n = 1..20 ), 100); # Peter Bala, Jan 22 2021
  • Mathematica
    RealDigits[Sum[n^2/(2^n - 1), {n, 1, 500}], 10, 100][[1]]

Formula

Equals Sum_{k>=1} k^2/(2^k - 1).
Faster converging series: Sum_{n >= 1} (1/2)^(n^2)*( n^2*(8^n) - ((n-1)^2 - 2)*4^n - ((n+1)^2 - 2)*(2^n) + n^2 )/(2^n - 1)^3. - Peter Bala, Jan 19 2021

A335765 Decimal expansion of Sum_{k>=1} 1/2^(k-omega(k)) where omega(k) is the number of distinct primes dividing k (A001221).

Original entry on oeis.org

1, 5, 3, 3, 8, 8, 5, 6, 4, 1, 4, 7, 4, 3, 8, 0, 6, 6, 6, 8, 2, 6, 4, 0, 6, 0, 3, 0, 9, 7, 0, 6, 3, 2, 8, 8, 1, 5, 0, 0, 7, 0, 7, 9, 4, 0, 3, 6, 2, 1, 5, 4, 7, 7, 9, 1, 6, 6, 3, 3, 8, 1, 2, 5, 8, 9, 8, 0, 9, 4, 8, 9, 6, 3, 8, 0, 4, 3, 8, 8, 6, 4, 4, 3, 9, 5, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 21 2020

Keywords

Examples

			1.533885641474380666826406030970632881500707940362154...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[1/2^(n - PrimeNu[n]), {n, 1, 500}], 10, 100][[1]]

Formula

Equals Sum_{k>=1} A034444(k)/2^k.
Equals Sum_{k>=1} mu(k)^2/(2^k - 1), where mu(k) is the Möbius function (A008683), or, equivalently, Sum_{k>=1} 1/A000225(A005117(k)).

A367325 Decimal expansion of Sum_{k>=1} sigma(k)/(2^k-1), where sigma(k) is the sum of divisors of k (A000203).

Original entry on oeis.org

3, 6, 0, 4, 4, 4, 7, 3, 4, 1, 9, 7, 1, 9, 4, 6, 7, 4, 4, 8, 9, 3, 6, 4, 8, 4, 7, 3, 6, 2, 3, 5, 8, 8, 3, 5, 6, 0, 0, 4, 9, 5, 4, 8, 7, 0, 6, 4, 9, 9, 8, 7, 5, 0, 1, 3, 8, 3, 6, 2, 6, 3, 1, 5, 0, 9, 6, 6, 2, 9, 5, 0, 1, 7, 0, 7, 1, 3, 4, 9, 6, 6, 9, 1, 7, 8, 2, 2, 8, 9, 9, 1, 6, 9, 9, 2, 7, 5, 4, 4, 2, 7, 0, 3, 8
Offset: 1

Views

Author

Amiram Eldar, Nov 14 2023

Keywords

Examples

			3.60444734197194674489364847362358835600495487064998...
		

Crossrefs

Similar constants: A065442, A066766, A116217, A335763, A335764.

Programs

  • Maple
    with(numtheory): evalf(sum(sigma(k)/(2^k-1), k = 1..infinity), 120)
  • Mathematica
    RealDigits[Sum[DivisorSigma[1,n]/(2^n-1), {n, 1, 500}], 10, 120][[1]]
  • PARI
    suminf(k = 1, sigma(k)/(2^k-1))
    
  • PARI
    suminf(k = 1, numdiv(k)/((2^k-1)*(1-1/2^k)))

Formula

Equals Sum_{k>=1} d(k)/((2^k-1)*(1-1/2^k)), where d(k) is the number of divisors of k (A000005).
Showing 1-5 of 5 results.