cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A066766 Decimal expansion of Sum_{k>=1} sigma(k)/2^k where sigma(k) is the sum of divisors of k, 1 <= d <= k.

Original entry on oeis.org

2, 7, 4, 4, 0, 3, 3, 8, 8, 8, 7, 5, 9, 4, 8, 8, 3, 6, 0, 4, 8, 0, 2, 1, 4, 8, 9, 1, 4, 9, 2, 2, 7, 2, 1, 6, 4, 3, 1, 1, 4, 2, 8, 9, 8, 1, 3, 1, 9, 6, 3, 9, 3, 1, 7, 8, 4, 8, 5, 2, 8, 8, 8, 4, 7, 3, 7, 9, 1, 2, 2, 8, 3, 2, 6, 3, 8, 9, 5, 6, 8, 8, 5, 6, 6, 2, 5, 2, 3, 1, 0, 7, 1, 2, 5, 0, 6, 8, 8, 7, 7, 3, 7, 4, 0
Offset: 1

Views

Author

Randall L Rathbun, Jan 16 2002

Keywords

Examples

			2.74403388875948836048021489149227216431142898131963931784...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.

Crossrefs

Programs

  • Maple
    evalf( add( (1/2)^(n^2) * (n*(4^n - 1) + 2^n)/(2^n - 1)^2, n = 1..20), 100); # Peter Bala, Jan 19 2021
  • Mathematica
    RealDigits[Sum[n/(2^n - 1), {n, 1, 500}], 10, 100][[1]] (* Amiram Eldar, Jun 22 2020 *)
  • PARI
    smv(v)= s=0; for(i=1,matsize(v)[2],s=s+v[i]); s
    A066766(n)= sm=0; for(j=1,n,sm=sm+smv(divisors(j)/2^j)); sm*1.0
    
  • PARI
    suminf(k=1, sigma(k)/2^k) \\ Michel Marcus, Apr 27 2018

Formula

Equals Sum_{k>=1} k/(2^k - 1). - Amiram Eldar, Jun 22 2020
Faster converging series: Sum_{n >= 1} (1/2)^(n^2) * (n*(4^n - 1) + 2^n)/(2^n - 1)^2. - Peter Bala, Jan 19 2021
From Amiram Eldar, Oct 16 2022: (Start)
Equals Sum_{k>=1} 2^k/(2^k - 1)^2.
Equals A065442 + A065443. (End)

Extensions

Name corrected by Paul D. Hanna, Apr 26 2018

A335764 Decimal expansion of Sum_{k>=1} sigma(k)/(k*2^k) where sigma(k) is the sum of divisors of k (A000203).

Original entry on oeis.org

1, 2, 4, 2, 0, 6, 2, 0, 9, 4, 8, 1, 2, 4, 1, 4, 9, 4, 5, 7, 9, 7, 8, 4, 5, 4, 8, 1, 8, 9, 4, 6, 2, 9, 6, 6, 8, 9, 7, 3, 4, 0, 3, 9, 7, 8, 2, 5, 0, 4, 2, 5, 8, 8, 4, 6, 2, 7, 1, 3, 8, 1, 6, 7, 2, 5, 3, 3, 9, 1, 1, 8, 4, 4, 7, 0, 6, 2, 8, 8, 4, 6, 5, 8, 2, 4, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 21 2020

Keywords

Examples

			1.242062094812414945797845481894629668973403978250425...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[1/n/(2^n - 1), {n, 1, 500}], 10, 100][[1]]
    RealDigits[-Log[QPochhammer[1/2]], 10, 120][[1]] (* Vaclav Kotesovec, Feb 18 2021 *)
  • PARI
    suminf(x = 1, sigma(x)/(x*2^x)) \\ David A. Corneth, Jun 21 2020

Formula

Equals Sum_{k>=1} (A017665(k)/A017666(k))/2^k.
Equals Sum_{k>=1} 1/(k*(2^k - 1)) = Sum_{k>=1} 1/A066524(k).
Equals -Sum_{k>=1} log(1-2^(-k)).
Equals -log(A048651). - Amiram Eldar, Feb 19 2022

A335765 Decimal expansion of Sum_{k>=1} 1/2^(k-omega(k)) where omega(k) is the number of distinct primes dividing k (A001221).

Original entry on oeis.org

1, 5, 3, 3, 8, 8, 5, 6, 4, 1, 4, 7, 4, 3, 8, 0, 6, 6, 6, 8, 2, 6, 4, 0, 6, 0, 3, 0, 9, 7, 0, 6, 3, 2, 8, 8, 1, 5, 0, 0, 7, 0, 7, 9, 4, 0, 3, 6, 2, 1, 5, 4, 7, 7, 9, 1, 6, 6, 3, 3, 8, 1, 2, 5, 8, 9, 8, 0, 9, 4, 8, 9, 6, 3, 8, 0, 4, 3, 8, 8, 6, 4, 4, 3, 9, 5, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 21 2020

Keywords

Examples

			1.533885641474380666826406030970632881500707940362154...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[1/2^(n - PrimeNu[n]), {n, 1, 500}], 10, 100][[1]]

Formula

Equals Sum_{k>=1} A034444(k)/2^k.
Equals Sum_{k>=1} mu(k)^2/(2^k - 1), where mu(k) is the Möbius function (A008683), or, equivalently, Sum_{k>=1} 1/A000225(A005117(k)).

A367325 Decimal expansion of Sum_{k>=1} sigma(k)/(2^k-1), where sigma(k) is the sum of divisors of k (A000203).

Original entry on oeis.org

3, 6, 0, 4, 4, 4, 7, 3, 4, 1, 9, 7, 1, 9, 4, 6, 7, 4, 4, 8, 9, 3, 6, 4, 8, 4, 7, 3, 6, 2, 3, 5, 8, 8, 3, 5, 6, 0, 0, 4, 9, 5, 4, 8, 7, 0, 6, 4, 9, 9, 8, 7, 5, 0, 1, 3, 8, 3, 6, 2, 6, 3, 1, 5, 0, 9, 6, 6, 2, 9, 5, 0, 1, 7, 0, 7, 1, 3, 4, 9, 6, 6, 9, 1, 7, 8, 2, 2, 8, 9, 9, 1, 6, 9, 9, 2, 7, 5, 4, 4, 2, 7, 0, 3, 8
Offset: 1

Views

Author

Amiram Eldar, Nov 14 2023

Keywords

Examples

			3.60444734197194674489364847362358835600495487064998...
		

Crossrefs

Similar constants: A065442, A066766, A116217, A335763, A335764.

Programs

  • Maple
    with(numtheory): evalf(sum(sigma(k)/(2^k-1), k = 1..infinity), 120)
  • Mathematica
    RealDigits[Sum[DivisorSigma[1,n]/(2^n-1), {n, 1, 500}], 10, 120][[1]]
  • PARI
    suminf(k = 1, sigma(k)/(2^k-1))
    
  • PARI
    suminf(k = 1, numdiv(k)/((2^k-1)*(1-1/2^k)))

Formula

Equals Sum_{k>=1} d(k)/((2^k-1)*(1-1/2^k)), where d(k) is the number of divisors of k (A000005).
Showing 1-4 of 4 results.