cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A065442 Decimal expansion of Erdős-Borwein constant Sum_{k>=1} 1/(2^k - 1).

Original entry on oeis.org

1, 6, 0, 6, 6, 9, 5, 1, 5, 2, 4, 1, 5, 2, 9, 1, 7, 6, 3, 7, 8, 3, 3, 0, 1, 5, 2, 3, 1, 9, 0, 9, 2, 4, 5, 8, 0, 4, 8, 0, 5, 7, 9, 6, 7, 1, 5, 0, 5, 7, 5, 6, 4, 3, 5, 7, 7, 8, 0, 7, 9, 5, 5, 3, 6, 9, 1, 4, 1, 8, 4, 2, 0, 7, 4, 3, 4, 8, 6, 6, 9, 0, 5, 6, 5, 7, 1, 1, 8, 0, 1, 6, 7, 0, 1, 5, 5, 5, 7, 5, 8, 9, 7, 0, 4
Offset: 1

Views

Author

N. J. A. Sloane, Nov 18 2001

Keywords

Comments

Also the decimal expansion of the (finite) value of Sum_{ k >= 1, k has no digit equal to 0 in base 2 } 1/k. - Robert G. Wilson v, Aug 03 2010
This constant is irrational (Erdős, 1948; Borwein, 1992). - Amiram Eldar, Aug 01 2020

Examples

			1.60669515241529176378330152319092458048057967150575643577807955369...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.
  • Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, p. 258.

Crossrefs

See A038631 for continued fraction.

Programs

  • Maple
    # Uses Lambert series, cf. formula by Arndt:
    evalf( add( (1/2)^(n^2)*(1 + 2/(2^n - 1)), n = 1..20 ), 105);
    # Peter Bala, Jan 22 2021
  • Mathematica
    RealDigits[ Sum[1/(2^k - 1), {k, 350}], 10, 111][[1]] (* Robert G. Wilson v, Nov 05 2006 *)
    (* first install irwinSums.m, see reference, then *) First@ RealDigits@ iSum[0, 0, 111, 2] (* Robert G. Wilson v, Aug 03 2010 *)
    RealDigits[(Log[2] - 2 QPolyGamma[0, 1, 2])/Log[4], 10, 100][[1]] (* Fred Daniel Kline, May 23 2011 *)
    x = 1/2; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* Robert G. Wilson v, Oct 12 2014 after an observation and formula of Amarnath Murthy, see A073668 *)
  • PARI
    a(n)= s=0; for(x=1,n,s=s+1.0/(2^x-1)); s
    
  • PARI
    default(realprecision, 2080); x=suminf(k=1, 1/(2^k - 1)); for (n=1, 2000, d=floor(x); x=(x-d)*10; write("b065442.txt", n, " ", d)) \\ Harry J. Smith, Oct 19 2009
    
  • PARI
    k=1.; suminf(n=1, k>>=1; k^n*(1+k)/(1-k)) \\ Charles R Greathouse IV, Jun 03 2015

Formula

Note: Sum_{k>=1} d(k)/2^k = Sum_{k>=1} 1/(2^k - 1).
Fast computation via Lambert series: 1.60669515... = Sum_{n>=1} x^(n^2)*(1+x^n)/(1-x^n) where x=1/2. - Joerg Arndt, May 24 2011
Equals (1/2) * A211705. - Amiram Eldar, Aug 01 2020
Equals 1/4 + Sum_{k >= 2} (1 + 8^k)/((2^k - 1)*2^(k^2+k)). See Mathematics Stack Exchange link. - Peter Bala, Jan 28 2022
Equals A066766 - A065443. - Amiram Eldar, Oct 16 2022

Extensions

More terms from Randall L Rathbun, Jan 16 2002

A065443 Decimal expansion of Sum_{k=1..inf} 1/(2^k-1)^2.

Original entry on oeis.org

1, 1, 3, 7, 3, 3, 8, 7, 3, 6, 3, 4, 4, 1, 9, 6, 5, 9, 6, 6, 9, 6, 9, 1, 3, 3, 6, 8, 3, 0, 1, 3, 4, 7, 5, 8, 3, 8, 3, 0, 8, 4, 9, 3, 0, 9, 8, 1, 3, 8, 8, 2, 8, 8, 2, 0, 7, 0, 4, 4, 9, 3, 3, 1, 0, 4, 6, 4, 9, 3, 8, 6, 2, 5, 2, 0, 4, 0, 8, 9, 9, 8, 0, 0, 0, 5, 4, 0, 5, 0, 9, 0, 4, 2, 3, 5, 1, 3, 1, 1, 8, 4, 0, 3, 6
Offset: 1

Views

Author

N. J. A. Sloane, Nov 18 2001

Keywords

Examples

			1.1373387363441965966969133683013475838308493098...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.

Crossrefs

Programs

  • Mathematica
    RealDigits[NSum[1/(2^k - 1)^2, {k, 1, Infinity}, PrecisionGoal -> 40, AccuracyGoal -> 40, WorkingPrecision -> 500, NSumTerms -> 50, NSumExtraTerms -> 50]][[1]] (* Peter Bertok (peter(AT)bertok.com), Dec 04 2001 *)
    RealDigits[(Log[2] QPolyGamma[0, 1, 1/2] + QPolyGamma[1, 1, 1/2])/Log[2]^2 - 1, 10, 20][[1]] (* Eric W. Weisstein, Jun 02 2025 *)
  • PARI
    { default(realprecision, 2080); x=suminf(k=1, 1/(2^k - 1)^2); for (n=1, 2000, d=floor(x); x=(x-d)*10; write("b065443.txt", n, " ", d)) } \\ Harry J. Smith, Oct 19 2009

Formula

Equals Sum_{n>=1} 1/A060867(n).
From Amiram Eldar, Oct 16 2022: (Start)
Equals Sum_{k>=1} k/(2^(k+1)-1).
Equals A066766 - A065442. (End)
Equals Sum_{n >= 1} q^(n^2)*( (n - 1) + q^n - (n - 1)*q^(2*n) )/(1 - q^n)^2 evaluated at q = 1/2 (see A065608). - Peter Bala, Oct 16 2022

Extensions

More terms from Peter Bertok (peter(AT)bertok.com), Dec 04 2001

A335764 Decimal expansion of Sum_{k>=1} sigma(k)/(k*2^k) where sigma(k) is the sum of divisors of k (A000203).

Original entry on oeis.org

1, 2, 4, 2, 0, 6, 2, 0, 9, 4, 8, 1, 2, 4, 1, 4, 9, 4, 5, 7, 9, 7, 8, 4, 5, 4, 8, 1, 8, 9, 4, 6, 2, 9, 6, 6, 8, 9, 7, 3, 4, 0, 3, 9, 7, 8, 2, 5, 0, 4, 2, 5, 8, 8, 4, 6, 2, 7, 1, 3, 8, 1, 6, 7, 2, 5, 3, 3, 9, 1, 1, 8, 4, 4, 7, 0, 6, 2, 8, 8, 4, 6, 5, 8, 2, 4, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 21 2020

Keywords

Examples

			1.242062094812414945797845481894629668973403978250425...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[1/n/(2^n - 1), {n, 1, 500}], 10, 100][[1]]
    RealDigits[-Log[QPochhammer[1/2]], 10, 120][[1]] (* Vaclav Kotesovec, Feb 18 2021 *)
  • PARI
    suminf(x = 1, sigma(x)/(x*2^x)) \\ David A. Corneth, Jun 21 2020

Formula

Equals Sum_{k>=1} (A017665(k)/A017666(k))/2^k.
Equals Sum_{k>=1} 1/(k*(2^k - 1)) = Sum_{k>=1} 1/A066524(k).
Equals -Sum_{k>=1} log(1-2^(-k)).
Equals -log(A048651). - Amiram Eldar, Feb 19 2022

A335763 Decimal expansion of Sum_{k>=1} sigma_2(k)/2^k where sigma_2(k) is the sum of squares of divisors of k (A001157).

Original entry on oeis.org

7, 0, 9, 9, 2, 8, 5, 1, 7, 8, 8, 9, 0, 9, 0, 7, 1, 1, 4, 0, 3, 3, 1, 2, 5, 0, 2, 2, 1, 6, 4, 7, 5, 3, 6, 6, 3, 1, 5, 7, 6, 0, 8, 8, 3, 3, 2, 1, 1, 8, 9, 5, 9, 7, 8, 8, 3, 9, 2, 3, 7, 7, 4, 2, 8, 8, 9, 1, 2, 8, 8, 9, 1, 1, 2, 2, 6, 4, 5, 8, 7, 1, 7, 3, 5, 5, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 21 2020

Keywords

Examples

			7.099285178890907114033125022164753663157608833211895...
		

Crossrefs

Programs

  • Maple
    evalf(add( (1/2)^(n^2)*( n^2*(8^n) - ((n-1)^2 - 2)*4^n - ((n+1)^2 - 2)*(2^n) + n^2 )/(2^n - 1)^3, n = 1..20 ), 100); # Peter Bala, Jan 22 2021
  • Mathematica
    RealDigits[Sum[n^2/(2^n - 1), {n, 1, 500}], 10, 100][[1]]

Formula

Equals Sum_{k>=1} k^2/(2^k - 1).
Faster converging series: Sum_{n >= 1} (1/2)^(n^2)*( n^2*(8^n) - ((n-1)^2 - 2)*4^n - ((n+1)^2 - 2)*(2^n) + n^2 )/(2^n - 1)^3. - Peter Bala, Jan 19 2021

A066772 Continued fraction expansion for Sum_{k>=1} d(k)/2^k where d(k) are divisors of k, 1 <= d <= k.

Original entry on oeis.org

2, 1, 2, 1, 9, 1, 2, 1, 1, 1, 5, 8, 1, 3, 2, 3, 2, 2, 2, 2, 1, 3, 3, 4, 12, 1, 1, 1, 11, 4, 15, 6, 3, 3, 2, 1, 20, 4, 4, 1, 4, 1, 2, 1, 2, 6, 1, 2, 1, 28, 107, 1, 4, 4, 3, 1, 2, 2, 4, 2, 3, 51, 1, 1, 1, 4, 2, 4, 1, 20, 20, 1, 14, 3, 27, 1, 4, 3, 14, 329, 1, 1, 1, 111, 2, 3, 1, 2, 1, 4, 1, 6, 1, 4, 1
Offset: 0

Views

Author

Randall L Rathbun, Jan 16 2002

Keywords

Comments

A(1669) accurate to 500 decimal digits.

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.

Crossrefs

Cf. A066766 (decimal expansion).

Programs

  • PARI
    {smv(v)= s=0; for(i=1,matsize(v)[2],s=s+v[i]); s }
    {A066766(n)= sm=0; for(j=1,n,sm=sm+smv(divisors(j)/2^j)); sm*1.0 }
    
  • PARI
    contfrac(suminf(k=1, sigma(k)/2^k)) \\ Michel Marcus, Apr 25 2022

Extensions

Offset changed by Andrew Howroyd, Jul 04 2024

A066767 a(n) = Sum_{k=1..n} sigma(k)*2^(n-k) where sigma(k) = A000203(k) is the sum of divisors of k.

Original entry on oeis.org

1, 5, 14, 35, 76, 164, 336, 687, 1387, 2792, 5596, 11220, 22454, 44932, 89888, 179807, 359632, 719303, 1438626, 2877294, 5754620, 11509276, 23018576, 46037212, 92074455, 184148952, 368297944, 736595944, 1473191918, 2946383908
Offset: 1

Views

Author

Randall L Rathbun, Jan 16 2002

Keywords

Comments

a(n) is the numerator of the unreduced fraction of the n-th partial sum of Sum_{k>=1} sigma(k)/2^k where the denominator of that unreduced fraction is 2^n. The partial sums converge to A066766 = 2.744033...

Examples

			a(1) = 2*(1/2);
a(2) = 4*(1/2 + (1+2)/4) since sigma(1) = 1 and sigma(2) = 1 + 2 = 3;
a(3) = 8*(1/2 + (1+2)/4 + (1+3)/8);
a(4) = 16*(1/2 + (1+2)/4 + (1+3)/8 + (1+2+4)/16).
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.

Crossrefs

Programs

  • PARI
    smv(v)= s=0; for(i=1,matsize(v)[2],s=s+v[i]); s
    a(n)= sm=0; for(j=1,n,sm=sm+smv(divisors(j)/2^j)); sm*2^n
    
  • PARI
    a(n) = 2^n*(sum(k=1, n, sigma(k)/2^k)); \\ Michel Marcus, Apr 25 2022

A335765 Decimal expansion of Sum_{k>=1} 1/2^(k-omega(k)) where omega(k) is the number of distinct primes dividing k (A001221).

Original entry on oeis.org

1, 5, 3, 3, 8, 8, 5, 6, 4, 1, 4, 7, 4, 3, 8, 0, 6, 6, 6, 8, 2, 6, 4, 0, 6, 0, 3, 0, 9, 7, 0, 6, 3, 2, 8, 8, 1, 5, 0, 0, 7, 0, 7, 9, 4, 0, 3, 6, 2, 1, 5, 4, 7, 7, 9, 1, 6, 6, 3, 3, 8, 1, 2, 5, 8, 9, 8, 0, 9, 4, 8, 9, 6, 3, 8, 0, 4, 3, 8, 8, 6, 4, 4, 3, 9, 5, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 21 2020

Keywords

Examples

			1.533885641474380666826406030970632881500707940362154...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[1/2^(n - PrimeNu[n]), {n, 1, 500}], 10, 100][[1]]

Formula

Equals Sum_{k>=1} A034444(k)/2^k.
Equals Sum_{k>=1} mu(k)^2/(2^k - 1), where mu(k) is the Möbius function (A008683), or, equivalently, Sum_{k>=1} 1/A000225(A005117(k)).

A367325 Decimal expansion of Sum_{k>=1} sigma(k)/(2^k-1), where sigma(k) is the sum of divisors of k (A000203).

Original entry on oeis.org

3, 6, 0, 4, 4, 4, 7, 3, 4, 1, 9, 7, 1, 9, 4, 6, 7, 4, 4, 8, 9, 3, 6, 4, 8, 4, 7, 3, 6, 2, 3, 5, 8, 8, 3, 5, 6, 0, 0, 4, 9, 5, 4, 8, 7, 0, 6, 4, 9, 9, 8, 7, 5, 0, 1, 3, 8, 3, 6, 2, 6, 3, 1, 5, 0, 9, 6, 6, 2, 9, 5, 0, 1, 7, 0, 7, 1, 3, 4, 9, 6, 6, 9, 1, 7, 8, 2, 2, 8, 9, 9, 1, 6, 9, 9, 2, 7, 5, 4, 4, 2, 7, 0, 3, 8
Offset: 1

Views

Author

Amiram Eldar, Nov 14 2023

Keywords

Examples

			3.60444734197194674489364847362358835600495487064998...
		

Crossrefs

Similar constants: A065442, A066766, A116217, A335763, A335764.

Programs

  • Maple
    with(numtheory): evalf(sum(sigma(k)/(2^k-1), k = 1..infinity), 120)
  • Mathematica
    RealDigits[Sum[DivisorSigma[1,n]/(2^n-1), {n, 1, 500}], 10, 120][[1]]
  • PARI
    suminf(k = 1, sigma(k)/(2^k-1))
    
  • PARI
    suminf(k = 1, numdiv(k)/((2^k-1)*(1-1/2^k)))

Formula

Equals Sum_{k>=1} d(k)/((2^k-1)*(1-1/2^k)), where d(k) is the number of divisors of k (A000005).
Showing 1-8 of 8 results.