A242000 Decimal expansion of delta = (1+alpha)/4, a constant appearing in Koecher's formula for Euler's gamma constant, where alpha is A065442, the Erdős-Borwein Constant.
6, 5, 1, 6, 7, 3, 7, 8, 8, 1, 0, 3, 8, 2, 2, 9, 4, 0, 9, 4, 5, 8, 2, 5, 3, 8, 0, 7, 9, 7, 7, 3, 1, 1, 4, 5, 1, 2, 0, 1, 4, 4, 9, 1, 7, 8, 7, 6, 4, 3, 9, 1, 0, 8, 9, 4, 4, 5, 1, 9, 8, 8, 8, 4, 2, 2, 8, 5, 4, 6, 0, 5, 1, 8, 5, 8, 7, 1, 6, 7, 2, 6, 4, 1, 4, 2, 7, 9, 5, 0, 4, 1, 7, 5, 3, 8, 8, 9, 3, 9, 7, 4
Offset: 0
Examples
0.6516737881038229409458253807977311451201449178764391089445...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.14 Digital Search Tree Constants, p. 355.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Steven R. Finch, Errata and Addenda to Mathematical Constants. p. 4.
- Eric Weisstein's Mathworld, Erdős-Borwein Constant
Programs
-
Mathematica
alpha = 1/2 - QPolyGamma[0, 1, 2]/Log[2]; delta = (1+alpha)/4; RealDigits[delta, 10, 102] // First
-
PARI
default(realprecision, 100); (1 + suminf(k=1, 1/(2^k - 1)))/4 \\ G. C. Greubel, Sep 06 2018
Comments