cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 108 results. Next

A048652 Continued fraction for Product_{k >= 1} (1-1/2^k) (Cf. A048651).

Original entry on oeis.org

0, 3, 2, 6, 4, 1, 2, 1, 9, 2, 1, 2, 3, 2, 3, 5, 1, 2, 1, 1, 6, 1, 2, 5, 79, 6, 4, 5, 1, 1, 1, 1, 12, 1, 1, 2, 5, 1, 659, 2, 17, 1, 5, 2, 3, 2, 6, 1, 1, 2, 3, 1, 2, 6, 1, 1, 3, 11, 1, 1, 2, 1, 1, 2, 4, 11, 2, 1, 3, 4, 2, 2, 1, 3, 1, 71, 1, 1, 1, 19, 1, 4, 1, 1, 8, 1, 49, 3, 1, 2, 2, 11, 1, 11, 10, 1, 2, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Continued fraction expansion of the constant Product{k>=1} (1-1/2^k)^(-1) = 3.46274661945506361... (A065446) gives essentially the same sequence.

Examples

			0.2887880950866024212788997219294585937270...
0.288788095086602421278899721... = 0 + 1/(3 + 1/(2 + 1/(6 + 1/(4 + ...)))). - _Harry J. Smith_, May 02 2009
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[ N[ Product[ 1/(1 - 1/2^k), {k, 1, Infinity} ], 500 ], 49]
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=prodinf(k=1, -1/2^k, 1); z=contfrac(x); for (n=1, 20001, write("b048652.txt", n-1, " ", z[n])); } \\ Harry J. Smith, May 07 2009

Extensions

Corrected by Harry J. Smith, May 02 2009
Deleted old PARI program. - Harry J. Smith, May 20 2009

A002884 Number of nonsingular n X n matrices over GF(2) (order of the group GL(n,2)); order of Chevalley group A_n (2); order of projective special linear group PSL_n(2).

Original entry on oeis.org

1, 1, 6, 168, 20160, 9999360, 20158709760, 163849992929280, 5348063769211699200, 699612310033197642547200, 366440137299948128422802227200, 768105432118265670534631586896281600, 6441762292785762141878919881400879415296000, 216123289355092695876117433338079655078664339456000
Offset: 0

Views

Author

Keywords

Comments

Also number of bases for GF(2^n) over GF(2).
Also (apparently) number of n X n matrices over GF(2) having permanent = 1. - Hugo Pfoertner, Nov 14 2003
The previous comment is true because over GF(2) permanents and determinants are the same. - Joerg Arndt, Mar 07 2008
The number of automorphisms of (Z_2)^n (the direct product of n copies of Z_2). - Peter Eastwood, Apr 06 2015
Note that n! divides a(n) since the subgroup of GL(n,2) consisting of all permutation matrices is isomorphic to S_n (the n-th symmetric group). - Jianing Song, Oct 29 2022
The number of boolean operations on n bits, or quantum operations on n qubits, that can be constructed using only CNOT (controlled NOT) gates. - David Radcliffe, Jul 06 2025

Examples

			PSL_2(2) is isomorphic to the symmetric group S_3 of order 6.
		

References

  • Roger W. Carter, Simple groups of Lie type. Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. viii+331pp. MR0407163 (53 #10946). See page 2.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
  • K. J. Horadam, Hadamard matrices and their applications. Princeton University Press, Princeton, NJ, 2007. xiv+263 pp. See p. 132.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A316622 and A316623.
Cf. A006516, A048651, A203303. Row sums of A381854.

Programs

  • Magma
    [1] cat [(&*[2^n -2^k: k in [0..n-1]]): n in [1..15]]; // G. C. Greubel, Aug 31 2023
    
  • Maple
    # First program
    A002884:= n-> mul(2^n - 2^i, i=0..n-1);
    seq(A002884(n), n = 0..12);
    # Second program
    A002884:= n-> 2^(n*(n-1)/2) * mul( 2^i - 1, i=1..n);
    seq(A002884(n), n=0..12);
  • Mathematica
    Table[Product[2^n-2^i,{i,0,n-1}],{n,0,13}] (* Harvey P. Dale, Aug 07 2011 *)
    Table[2^(n*(n-1)/2) QPochhammer[2, 2, n] // Abs, {n, 0, 11}] (* Jean-François Alcover, Jul 15 2017 *)
  • PARI
    a(n)=prod(i=2,n,2^i-1)<Charles R Greathouse IV, Jan 13 2012
    
  • SageMath
    [product(2^n -2^j for j in range(n)) for n in range(16)] # G. C. Greubel, Aug 31 2023

Formula

a(n) = Product_{i=0..n-1} (2^n-2^i).
a(n) = 2^(n*(n-1)/2) * Product_{i=1..n} (2^i - 1).
a(n) = A203303(n+1)/A203303(n). - R. J. Mathar, Jan 06 2012
a(n) = (6*a(n-1)^2*a(n-3) - 8*a(n-1)*a(n-2)^2) / (a(n-2)*a(n-3)) for n > 2. - Seiichi Manyama, Oct 20 2016
a(n) ~ A048651 * 2^(n^2). - Vaclav Kotesovec, May 19 2020
a(n) = A006125(n) * A005329(n). - John Keith, Jun 30 2021
a(n) = Product_{k=1..n} A006516(k). - Amiram Eldar, Jul 06 2025

A005329 a(n) = Product_{i=1..n} (2^i - 1). Also called 2-factorial numbers.

Original entry on oeis.org

1, 1, 3, 21, 315, 9765, 615195, 78129765, 19923090075, 10180699028325, 10414855105976475, 21319208401933844325, 87302158405919092510875, 715091979502883286756577125, 11715351900195736886933003038875, 383876935713713710574133710574817125
Offset: 0

Views

Author

Keywords

Comments

Conjecture: this sequence is the inverse binomial transform of A075272 or, equivalently, the inverse binomial transform of the BinomialMean transform of A075271. - John W. Layman, Sep 12 2002
To win a game, you must flip n+1 heads in a row, where n is the total number of tails flipped so far. Then the probability of winning for the first time after n tails is A005329 / A006125. The probability of having won before n+1 tails is A114604 / A006125. - Joshua Zucker, Dec 14 2005
Number of upper triangular n X n (0,1)-matrices with no zero rows. - Vladeta Jovovic, Mar 10 2008
Equals the q-Fibonacci series for q = (-2), and the series prefaced with a 1: (1, 1, 1, 3, 21, ...) dot (1, -2, 4, -8, ...) if n is even, and (-1, 2, -4, 8, ...) if n is odd. For example, a(3) = 21 = (1, 1, 1, 3) dot (-1, 2, -4, 8) = (-1, 2, -4, 24) and a(4) = 315 = (1, 1, 1, 3, 21) dot (1, -2, 4, -8 16) = (1, -2, 4, -24, 336). - Gary W. Adamson, Apr 17 2009
Number of chambers in an A_n(K) building where K=GF(2) is the field of two elements. This is also the number of maximal flags in an n-dimensional vector space over a field of two elements. - Marcos Spreafico, Mar 22 2012
Given probability p = 1/2^n that an outcome will occur at the n-th stage of an infinite process, then starting at n=1, A114604(n)/A006125(n+2) = 1-a(n)/A006125(n+1) is the probability that the outcome has occurred up to and including the n-th iteration. The limiting ratio is 1-A048651 ~ 0.7112119. These observations are a more formal and generalized statement of Joshua Zucker's Dec 14, 2005 comment. - Bob Selcoe, Mar 02 2016
Also the number of dominating sets in the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017
Empirical: Letting Q denote the Hall-Littlewood Q basis of the symmetric functions over the field of fractions of the univariate polynomial ring in t over the field of rational numbers, and letting h denote the complete homogeneous basis, a(n) is equal to the absolute value of 2^A000292(n) times the coefficient of h_{1^(n*(n+1)/2)} in Q_{(n, n-1, ..., 1)} with t evaluated at 1/2. - John M. Campbell, Apr 30 2018
The series f(x) = Sum_{n>=0} x^(2^n-1)/a(n) satisfies f'(x) = f(x^2), f(0) = 1. - Lucas Larsen, Jan 05 2022

Examples

			G.f. = 1 + x + 3*x^2 + 21*x^3 + 315*x^4 + 9765*x^5 + 615195*x^6 + 78129765*x^7 + ...
		

References

  • Annie Cuyt, Vigdis Brevik Petersen, Brigitte Verdonk, Haakon Waadeland, and William B. Jones, Handbook of continued fractions for special functions, Springer, New York, 2008. (see 19.2.1)
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 358.
  • Mark Ronan, Lectures on Buildings (Perspectives in Mathematics; Vol. 7), Academic Press Inc., 1989.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A048651, A079555, A152476 (inverse binomial transform).
Column q=2 of A069777.

Programs

  • GAP
    List([0..15],n->Product([1..n],i->2^i-1)); # Muniru A Asiru, May 18 2018
  • Magma
    [1] cat [&*[ 2^k-1: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Dec 24 2015
    
  • Maple
    A005329 := proc(n) option remember; if n<=1 then 1 else (2^n-1)*procname(n-1); end if; end proc: seq(A005329(n), n=0..15);
  • Mathematica
    a[0] = 1; a[n_] := a[n] = (2^n-1)*a[n-1]; a /@ Range[0,14] (* Jean-François Alcover, Apr 22 2011 *)
    FoldList[Times, 1, 2^Range[15] - 1] (* Harvey P. Dale, Dec 21 2011 *)
    Table[QFactorial[n, 2], {n, 0, 14}] (* Arkadiusz Wesolowski, Oct 30 2012 *)
    QFactorial[Range[0, 10], 2] (* Eric W. Weisstein, Jul 14 2017 *)
    a[ n_] := If[ n < 0, 0, (-1)^n QPochhammer[ 2, 2, n]]; (* Michael Somos, Jan 28 2018 *)
  • PARI
    a(n)=polcoeff(sum(m=0,n,2^(m*(m+1)/2)*x^m/prod(k=0,m,1+2^k*x+x*O(x^n))),n) \\ Paul D. Hanna, Sep 17 2009
    
  • PARI
    Dx(n,F)=local(D=F);for(i=1,n,D=deriv(D));D
    a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+sum(k=1,n,x^k/k!*Dx(k,x*A+x*O(x^n) ))); polcoeff(A,n) \\ Paul D. Hanna, Apr 21 2012
    
  • PARI
    {a(n) = if( n<0, 0, prod(k=1, n, 2^k - 1))}; /* Michael Somos, Jan 28 2018 */
    
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sum(k=0, n+1, (-1)^k * 2^(k*(k+1)/2) * prod(j=1, k, (2^(n+1-j) - 1) / (2^j - 1))))}; /* Michael Somos, Jan 28 2018 */
    

Formula

a(n)/2^(n*(n+1)/2) -> c = 0.2887880950866024212788997219294585937270... (see A048651, A048652).
From Paul D. Hanna, Sep 17 2009: (Start)
G.f.: Sum_{n>=0} 2^(n*(n+1)/2) * x^n / (Product_{k=0..n} (1+2^k*x)).
Compare to: 1 = Sum_{n>=0} 2^(n*(n+1)/2) * x^n/(Product_{k=1..n+1} (1+2^k*x)). (End)
G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n/n! * d^n/dx^n x*A(x). - Paul D. Hanna, Apr 21 2012
a(n) = 2^(binomial(n+1,2))*(1/2; 1/2){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 23 2015
a(n) = Product_{i=1..n} A000225(i). - Michel Marcus, Dec 27 2015
From Peter Bala, Nov 10 2017: (Start)
O.g.f. as a continued fraction of Stieltjes' type: A(x) = 1/(1 - x/(1 - 2*x/(1 - 6*x/(1 - 12*x/(1 - 28*x/(1 - 56*x/(1 - ... -(2^n - 2^floor(n/2))*x/(1 - ... )))))))) (follows from Heine's continued fraction for the ratio of two q-hypergeometric series at q = 2. See Cuyt et al. 19.2.1).
A(x) = 1/(1 + x - 2*x/(1 - (2 - 1)^2*x/(1 + x - 2^3*x/(1 - (2^2 - 1)^2*x/(1 + x - 2^5*x/(1 - (2^3 - 1)^2*x/(1 + x - 2^7*x/(1 - (2^4 - 1)^2*x/(1 + x - ... ))))))))). (End)
0 = a(n)*(a(n+1) - a(n+2)) + 2*a(n+1)^2 for all n>=0. - Michael Somos, Feb 23 2019
From Amiram Eldar, Feb 19 2022: (Start)
Sum_{n>=0} 1/a(n) = A079555.
Sum_{n>=0} (-1)^n/a(n) = A048651. (End)

Extensions

Better definition from Leslie Ann Goldberg (leslie(AT)dcs.warwick.ac.uk), Dec 11 1999

A067080 If n = ab...def in decimal notation then the left digitorial function Ld(n) = ab...def*ab...de*ab...d*...*ab*a.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, 360, 366, 372
Offset: 1

Views

Author

Amarnath Murthy, Jan 05 2002

Keywords

Comments

This entry should probably start at n=0, just as A067079 does. But that would require a number of changes, so it can wait until the editors have more free time. - N. J. A. Sloane, Nov 29 2014

Examples

			Ld(256) = 256*25*2 =12800.
a(31)=floor(31/10^0)*floor(31/10^1)=31*3=93;
a(42)=168 since 42=42(base-10) and so a(42)=42*4(base-10)=42*4=168.
		

Crossrefs

For formulas regarding a general parameter p (i.e. terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132027(p=3)-A132033(p=9), A132263(p=11), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Programs

  • Haskell
    a067080 n = if n <= 9 then n else n * a067080 (n `div` 10)
    -- Reinhard Zumkeller, Nov 29 2012
  • Mathematica
    Table[d = IntegerDigits[n]; rd = 1; While[ Length[d] > 0, rd = rd*FromDigits[d]; d = Drop[d, -1]]; rd, {n, 1, 75} ]
    Table[Times@@NestList[Quotient[#,10]&,n,IntegerLength[n]-1],{n,70}] (* Harvey P. Dale, Dec 16 2013 *)
  • PARI
    a(n)=my(t=n);while(n\=10,t*=n); t \\ Charles R Greathouse IV, Nov 20 2012
    

Formula

a(n) = Product_{k=1..length(n)} floor(n/10^(k-1)). - Vladeta Jovovic, Jan 08 2002
From Hieronymus Fischer, Aug 13 2007: (Start)
a(n) = product{0<=k<=floor(log_10(n)), floor(n/10^k)}, n>=1.
Recurrence:
a(n) = n*a(floor(n/10));
a(n*10^m) = n^m*10^(m(m+1)/2)*a(n).
a(k*10^m) = k^(m+1)*10^(m(m+1)/2), for 0
a(n) <= b(n), where b(n)=n^(1+floor(log_10(n)))/10^(1/2*(1+floor(log_10(n)))*floor(log_10(n))); equality holds for n=k*10^m, m>=0, 1<=k<10. Here b(n) can also be written n^(1+floor(log_10(n)))/10^A000217(floor(log_10(n))).
Also: a(n) <= 3^((1-log_10(3))/2)*n^((1+log_10(n))/2)=1.332718...*10^A000217(log_10(n)), equality for n=3*10^m, m>=0.
a(n) > c*b(n), where c=0.472362443816572... (see constant A132026).
Also: a(n) > c*2^((1-log_10(2))/2)*n^((1+log_10(n))/2) = 0.601839...*10^A000217(log_10(n)).
lim inf a(n)/b(n) = 0.472362443816572..., for n-->oo.
lim sup a(n)/b(n) = 1, for n-->oo.
lim inf a(n)/n^((1+log_10(n))/2) = 0.472362443816572...*sqrt(2)/2^log_10(sqrt(2)), for n-->oo.
lim sup a(n)/n^((1+log_10(n))/2) = sqrt(3)/3^log_10(sqrt(3)), for n-->oo.
lim inf a(n)/a(n+1) = 0.472362443816572... for n-->oo (see constant A132026).
a(n) = O(n^((1+log_10(n))/2)). (End)

Extensions

More terms from Robert G. Wilson v, Jan 07 2002

A070933 Expansion of Product_{k>=1} 1/(1 - 2*t^k).

Original entry on oeis.org

1, 2, 6, 14, 34, 74, 166, 350, 746, 1546, 3206, 6550, 13386, 27114, 54894, 110630, 222794, 447538, 898574, 1801590, 3610930, 7231858, 14480654, 28983246, 58003250, 116054034, 232186518, 464475166, 929116402, 1858449178, 3717247638, 7434950062, 14870628026, 29742206138, 59485920374, 118973809798, 237950730522, 475905520474
Offset: 0

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 21 2002

Keywords

Comments

See A083355 for a similar formula. - Thomas Wieder, May 07 2008
Partitions of n into 2 sorts of parts: the parts are unordered, but not the sorts; see example and formula by Wieder. - Joerg Arndt, Apr 28 2013
Convolution inverse of A070877. - George Beck, Dec 02 2018
Number of conjugacy classes of n X n matrices over GF(2). Cf. Morrison link, section 2.9. - Geoffrey Critzer, May 26 2021

Examples

			From _Joerg Arndt_, Apr 28 2013: (Start)
There are a(3)=14 partitions of 3 with 2 ordered sorts. Here p:s stands for "part p of sort s":
01:  [ 1:0  1:0  1:0  ]
02:  [ 1:0  1:0  1:1  ]
03:  [ 1:0  1:1  1:0  ]
04:  [ 1:0  1:1  1:1  ]
05:  [ 1:1  1:0  1:0  ]
06:  [ 1:1  1:0  1:1  ]
07:  [ 1:1  1:1  1:0  ]
08:  [ 1:1  1:1  1:1  ]
09:  [ 2:0  1:0  ]
10:  [ 2:0  1:1  ]
11:  [ 2:1  1:0  ]
12:  [ 2:1  1:1  ]
13:  [ 3:0  ]
14:  [ 3:1  ]
(End)
		

Crossrefs

Cf. A083355.
Column k=2 of A246935.
Cf. A048651.
Row sums of A256193.
Antidiagonal sums of A322210.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-2*x^k): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, 2*b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Sep 07 2014
  • Mathematica
    CoefficientList[ Series[ Product[1 / (1 - 2t^k), {k, 1, 35}], {t, 0, 35}], t]
    CoefficientList[Series[E^Sum[2^k*x^k / (k*(1-x^k)), {k,1,30}],{x,0,30}],x] (* Vaclav Kotesovec, Sep 09 2014 *)
    (O[x]^20 - 1/QPochhammer[2,x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
  • Maxima
    S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */
    
  • PARI
    N=66; q='q+O('q^N); Vec(1/sum(n=0, N, (-2)^n*q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) )) \\ Joerg Arndt, Mar 09 2014
    

Formula

a(n) = (1/n)*Sum_{k=1..n} A054598(k)*a(n-k). - Vladeta Jovovic, Nov 23 2002
a(n) is asymptotic to c*2^n where c=3.46253527447396564949732... - Benoit Cloitre, Oct 26 2003. Right value of this constant is c = 1/A048651 = 3.46274661945506361153795734292443116454075790290443839132935303175891543974042... . - Vaclav Kotesovec, Sep 09 2014
Euler transform of A000031(n). - Vladeta Jovovic, Jun 23 2004
a(n) = Sum_{k=1..n} p(n,k)*A000079(k) where p(n,k) = number of integer partitions of n into k parts. - Thomas Wieder, May 07 2008
a(n) = S(n,1), where S(n,m) = 2 + Sum_{k=m..floor(n/2)} 2*S(n-k,k), S(n,n)=2, S(0,m)=1, S(n,m)=0 for n < m. - Vladimir Kruchinin, Sep 07 2014
a(n) = Sum_{lambda,mu,nu} (c^{lambda}{mu,nu})^2, where lambda ranges over all partitions of n, mu and nu range over all partitions satisfying |mu| + |nu| = n, and c^{lambda}{mu,nu} denotes a Littlewood-Richardson coefficient. - Richard Stanley, Nov 16 2014
G.f.: Sum_{i>=0} 2^i*x^i/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 12 2018
G.f.: Product_{j>=1} Product_{i>=1} 1/(1-x^(i*j))^A001037(j) given in Morrison link section 2.9. - Geoffrey Critzer, May 26 2021

Extensions

Edited and extended by Robert G. Wilson v, May 25 2002

A098844 a(1)=1, a(n) = n*a(floor(n/2)).

Original entry on oeis.org

1, 2, 3, 8, 10, 18, 21, 64, 72, 100, 110, 216, 234, 294, 315, 1024, 1088, 1296, 1368, 2000, 2100, 2420, 2530, 5184, 5400, 6084, 6318, 8232, 8526, 9450, 9765, 32768, 33792, 36992, 38080, 46656, 47952, 51984, 53352, 80000, 82000, 88200, 90300
Offset: 1

Author

Benoit Cloitre, Nov 03 2004

Keywords

Examples

			a(10) = floor(10/2^0)*floor(10/2^1)*floor(10/2^2)*floor(10/2^3) = 10*5*2*1 = 100;
a(17) = 1088 since 17 = 10001(base 2) and so a(17) = 10001*1000*100*10*1(base 2) = 17*8*4*2*1 = 1088.
		

Crossrefs

For formulas regarding a general parameter p (i.e., terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=3 to p=12 see A132027(p=3)-A132033(p=9), A067080(p=10), A132263(p=11), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Programs

  • Mathematica
    lst={};Do[p=n;s=1;While[p>1,p=IntegerPart[p/2];s*=p;];AppendTo[lst,s],{n,1,6!,2}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 28 2009 *)
  • PARI
    a(n)=if(n<2,1,n*a(floor(n/2)))
    
  • Python
    from math import prod
    def A098844(n): return n*prod(n//2**k for k in range(1,n.bit_length()-1)) # Chai Wah Wu, Jun 07 2022

Formula

a(2^n) = 2^(n*(n+1)/2) = A006125(n+1).
From Hieronymus Fischer, Aug 13 2007: (Start)
a(n) = Product_{k=0..floor(log_2(n))} floor(n/2^k), n>=1.
Recurrence:
a(n*2^m) = n^m*2^(m(m+1)/2)*a(n).
a(n) <= n^((1+log_2(n))/2) = 2^A000217(log_2(n)); equality iff n is a power of 2.
a(n) >= c(n)*(n+1)^((1 + log_2(n+1))/2) for n != 2,
where c(n) = Product_{k=1..floor(log_2(n))} (1 - 1/2^k); equality holds iff n+1 is a power of 2.
a(n) > c*(n+1)^((1 + log_2(n+1))/2)
where c = 0.288788095086602421... (see constant A048651).
lim inf a(n)/n^((1+log_2(n))/2)=0.288788095086602421... for n-->oo.
lim sup a(n)/n^((1+log_2(n))/2) = 1 for n-->oo.
lim inf a(n)/a(n+1) = 0.288788095086602421... for n-->oo (see constant A048651).
a(n) = O(n^((1+log_2(n))/2)). (End)

Extensions

Formula section edited by Hieronymus Fischer, Jun 13 2012

A238349 Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n with k parts p at position p (fixed points), n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 3, 4, 1, 0, 0, 6, 7, 3, 0, 0, 0, 11, 16, 4, 1, 0, 0, 0, 22, 29, 12, 1, 0, 0, 0, 0, 42, 60, 23, 3, 0, 0, 0, 0, 0, 82, 120, 47, 7, 0, 0, 0, 0, 0, 0, 161, 238, 100, 12, 1, 0, 0, 0, 0, 0, 0, 316, 479, 198, 30, 1, 0, 0, 0, 0, 0, 0, 0, 624, 956, 404, 61, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1235, 1910, 818, 126, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Author

Joerg Arndt and Alois P. Heinz, Feb 25 2014

Keywords

Comments

T(n*(n+3)/2,n) = A227682(n).
From Vaclav Kotesovec, Sep 07 2014: (Start)
In general, column k is asymptotic to c(k) * 2^n. The constants c(k) numerically:
c(0) = 0.144394047543301210639449860964615390044455952420342... = A048651/2
c(1) = 0.231997216225445223894202367545783700531838988546098... = c(0)*A065442
c(2) = 0.104261929557371534733906196116707679501974368826074...
c(3) = 0.017956317806894073430249112172514186063327165575720...
c(4) = 0.001343254222922697613125145839110293324517874530073...
c(5) = 0.000046459767012163920051487037952792359225887287888...
c(6) = 0.000000768651747857094917953943327540619110335556499...
c(7) = 0.000000006200599904985793344094393321042983316604040...
c(8) = 0.000000000024656652167851516076173236693314090168122...
c(9) = 0.000000000000048633746319332356416193899916110113745...
c(10)= 0.000000000000000047750743608910618576944191079881479...
c(20)= 1.05217230403079700467566...*10^(-63)
For big k is c(k) ~ m * 2^(-k*(k+1)/2), where m = 1/(4*c(0)) = 1/(2*A048651) = 1.7313733097275318...
(End)

Examples

			Triangle starts:
00:  1,
01:  0, 1,
02:  1, 1, 0,
03:  2, 1, 1, 0,
04:  3, 4, 1, 0, 0,
05:  6, 7, 3, 0, 0, 0,
06:  11, 16, 4, 1, 0, 0, 0,
07:  22, 29, 12, 1, 0, 0, 0, 0,
08:  42, 60, 23, 3, 0, 0, 0, 0, 0,
09:  82, 120, 47, 7, 0, 0, 0, 0, 0, 0,
10:  161, 238, 100, 12, 1, 0, 0, 0, 0, 0, 0,
11:  316, 479, 198, 30, 1, 0, 0, 0, 0, 0, 0, 0,
12:  624, 956, 404, 61, 3, 0, 0, 0, 0, 0, 0, 0, 0,
13:  1235, 1910, 818, 126, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0,
14:  2449, 3817, 1652, 258, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
15:  4864, 7633, 3319, 537, 30, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
...
From _Gus Wiseman_, Apr 03 2022: (Start)
Row n = 5 counts the following compositions (empty columns indicated by dots):
  (5)     (14)     (113)   .  .  .
  (23)    (32)     (122)
  (41)    (131)    (1211)
  (212)   (221)
  (311)   (1112)
  (2111)  (1121)
          (11111)
(End)
		

References

  • M. Archibald, A. Blecher and A. Knopfmacher, Fixed points in compositions and words, accepted by the Journal of Integer Sequences.

Crossrefs

Row sums are A011782.
The version for permutations is A008290.
The version with all zeros removed is A238350.
The version for reversed partitions is A238352.
The corresponding rank statistic is A352512, nonfixed A352513.
The version for nonfixed points is A352523, A352520 (k=1).
Below: comps = compositions, first = column k=0, stat = rank statistic.
- A352521 counts comps by strong nonexcedances, first A219282, stat A352514.
- A352522 counts comps by weak nonexcedances, first A238874, stat A352515.
- A352524 counts comps by strong excedances, first A008930, stat A352516.
- A352525 counts comps by weak excedances, A177510 (k=1), stat A352517.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, expand(
           add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 1)):
    seq(T(n), n=0..15);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Expand[Sum[b[n-j, i+1]*If[i == j, x, 1], {j, 1, n}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 1]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pq[#]==k&]],{n,0,9},{k,0,n}] (* Gus Wiseman, Apr 03 2022 *)

A100220 Decimal expansion of Product_{k>=1} (1 - 1/3^k).

Original entry on oeis.org

5, 6, 0, 1, 2, 6, 0, 7, 7, 9, 2, 7, 9, 4, 8, 9, 4, 4, 9, 6, 9, 7, 9, 2, 2, 4, 3, 3, 1, 4, 1, 4, 0, 0, 1, 4, 3, 7, 9, 7, 3, 6, 3, 3, 3, 7, 9, 8, 3, 6, 2, 4, 6, 4, 4, 6, 2, 9, 5, 6, 2, 9, 7, 3, 1, 7, 5, 3, 3, 9, 6, 3, 0, 8, 9, 0, 3, 3, 7, 9, 4, 7, 0, 7, 7, 1, 6, 9, 1, 8, 7, 7, 0, 5, 3, 6, 7, 4, 3, 3, 4, 8
Offset: 0

Author

Eric W. Weisstein, Nov 09 2004

Keywords

Comments

Limit of the probability that a random N X N matrix, with entries chosen independently and uniformly from the field F_3, is nonsingular [Morrison (2006)]. - L. Edson Jeffery, Jan 22 2012

Examples

			0.56012607792794894496979224331414001437973633379836...
		

Programs

  • Mathematica
    N[(3^(1/24)*EllipticThetaPrime[1, 0, 1/Sqrt[3]]^(1/3))/2^(1/3)]
    N[QPochhammer[1/3,1/3]] (* G. C. Greubel, Nov 27 2015 *)

Formula

exp(-Sum_{k > 0} sigma_1(k)/k/3^k) = exp(-Sum_{k > 0} A000203(k)/k/3^k). - Hieronymus Fischer, Aug 07 2007
Product_{k >= 1} (1 - 1/3^k) = (1/3; 1/3){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 27 2015
From Peter Bala, Jan 18 2021: (Start)
Constant C = (1 - 1/3)*Sum_{n >= 0} (-1/3)^n/Product_{k = 1..n} (3^k - 1);
C = (1 - 1/3)*(1 - 1/9)*Sum_{n >= 0} (-1/9)^n/Product_{k = 1..n} (3^k - 1);
C = (1 - 1/3)*(1 - 1/9)*(1 - 1/27)*Sum_{n >= 0} (-1/27)^n/Product_{k = 1..n} (3^k - 1), and so on. (End)
From Amiram Eldar, Feb 19 2022: (Start)
Equals sqrt(2*Pi/log(3)) * exp(log(3)/24 - Pi^2/(6*log(3))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(3))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027871(n). (End)

A008930 Number of compositions (p_1, p_2, p_3, ...) of n with 1 <= p_i <= i for all i.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 21, 41, 80, 157, 310, 614, 1218, 2421, 4819, 9602, 19147, 38204, 76266, 152307, 304256, 607941, 1214970, 2428482, 4854630, 9705518, 19405030, 38800412, 77585314, 155145677, 310251190, 620437691, 1240771141, 2481374234
Offset: 0

Author

Mauro Torelli (torelli(AT)hermes.mc.dsi.unimi.it)

Keywords

Comments

a(n) is the number of compositions (p_1,p_2,...) of n with 1<=p_i<=i for all i. a(n) is the number of Dyck n-paths with strictly increasing peaks. To get the correspondence, given such a Dyck path, split the path after the first up step reaching height i, i=1,2,...,h where h is the path's maximum height and count up steps in each block. Example: U-U-DUU-U-DDDD has been split as specified, yielding the composition (1,1,2,1). - David Callan, Feb 18 2004
Row sums of triangle A177517.

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 11*x^6 + 21*x^7 + ...
The g.f. equals the following series involving q-factorials:
A(x) = 1 + x + x^2*(1+x) + x^3*(1+x)*(1+x+x^2) + x^4*(1+x)*(1+x+x^2)*(1+x+x^2+x^3) + x^5*(1+x)*(1+x+x^2)*(1+x+x^2+x^3)*(1+x+x^2+x^3+x^4) + ...
From _Joerg Arndt_, Dec 28 2012: (Start)
There are a(7)=21 compositions p(1)+p(2)+...+p(m) = 7 such that p(k) <= k:
  [ 1]  [ 1 1 1 1 1 1 1 ]
  [ 2]  [ 1 1 1 1 1 2 ]
  [ 3]  [ 1 1 1 1 2 1 ]
  [ 4]  [ 1 1 1 1 3 ]
  [ 5]  [ 1 1 1 2 1 1 ]
  [ 6]  [ 1 1 1 2 2 ]
  [ 7]  [ 1 1 1 3 1 ]
  [ 8]  [ 1 1 1 4 ]
  [ 9]  [ 1 1 2 1 1 1 ]
  [10]  [ 1 1 2 1 2 ]
  [11]  [ 1 1 2 2 1 ]
  [12]  [ 1 1 2 3 ]
  [13]  [ 1 1 3 1 1 ]
  [14]  [ 1 1 3 2 ]
  [15]  [ 1 2 1 1 1 1 ]
  [16]  [ 1 2 1 1 2 ]
  [17]  [ 1 2 1 2 1 ]
  [18]  [ 1 2 1 3 ]
  [19]  [ 1 2 2 1 1 ]
  [20]  [ 1 2 2 2 ]
  [21]  [ 1 2 3 1 ]
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i>=n,
          ceil(2^(n-1)), add(b(n-j, i+1), j=1..min(i, n)))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 25 2014, revised Jun 26 2023
  • Mathematica
    Sum[x^n*Product[(1-x^k)/(1-x), {k, 1, n}], {n, 0, 40}]+O[x]^41
    Table[SeriesCoefficient[1+Sum[x^j*Product[(1-x^k)/(1-x),{k,1,j}],{j,1,n}],{x,0,n}],{n,0,40}] (* Vaclav Kotesovec, Mar 17 2014 *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n-j, i+1], {j, 1, Min[i, n]}]]; a[n_] := b[n, 1]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 15 2015, after Alois P. Heinz *)
  • PARI
    { n=8; v=vector(n); for (i=1,n,v[i]=vector(i!)); v[1][1]=1; for (i=2,n, k=length(v[i-1]); for (j=1,k, for (a=0,i-1, v[i][j+a*k]=v[i-1][j]+a+1))); c=vector(n); for (i=1,n, for (j=1,i!, if (v[i][j]<=n, c[v[i][j]]++))); c } \\ Jon Perry
    
  • PARI
    N=66; q='q+O('q^N); Vec( sum(n=0,N, q^n * prod(k=1,n, (1-q^k)/(1-q) ) ) ) \\ Joerg Arndt, Mar 24 2014

Formula

G.f.: A(x) = Sum_{n>=0} x^n * Product_{k=1..n} (1-x^k)/(1-x). - Paul D. Hanna, Mar 20 2003
G.f.: A(x) = 1/(1 - x/(1+x) /(1 - x/(1+x+x^2) /(1 - x/(1+x+x^2+x^3) /(1 - x/(1+x+x^2+x^3+x^4) /(1 - x/(1+x+x^2+x^3+x^4+x^5) /(1 -...)))))), a continued fraction. - Paul D. Hanna, May 15 2012
Limit_{n->oo} a(n+1)/a(n) = 2. - Mats Granvik, Feb 22 2011
a(n) ~ c * 2^(n-1), where c = 0.288788095086602421... (see constant A048651). - Vaclav Kotesovec, Mar 17 2014

Extensions

More terms from Paul D. Hanna, Mar 20 2003
Offset corrected to 0 by Joerg Arndt, Mar 24 2014
New name (using comment by David Callan) from Joerg Arndt, Mar 25 2014

A132038 Decimal expansion of Product_{k>0} (1-1/10^k).

Original entry on oeis.org

8, 9, 0, 0, 1, 0, 0, 9, 9, 9, 9, 8, 9, 9, 9, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9
Offset: 0

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.8900100999989990000001000...
		

Programs

  • Mathematica
    digits = 105; Clear[p]; p[n_] := p[n] = RealDigits[Product[1-1/10^k , {k, 1, n}], 10, digits] // First; p[10]; p[n=20]; While[p[n] != p[n/2], n = 2*n]; p[n] (* Jean-François Alcover, Feb 17 2014 *)
    RealDigits[QPochhammer[1/10], 10, 105][[1]] (* Jean-François Alcover, Nov 18 2015 *)
    N[QPochhammer[1/10,1/10]] (* G. C. Greubel, Nov 30 2015 *)
  • PARI
    prodinf(x=1,-.1^x,1) \\ Charles R Greathouse IV, Nov 16 2013

Formula

Equals exp( -Sum_{n>0} sigma_1(n)/(n*10^n) ).
Equals (1/10; 1/10){infinity}, where (a; q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 30 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(2*Pi/log(10)) * exp(log(10)/24 - Pi^2/(6*log(10))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(10))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027878(n). (End)
Showing 1-10 of 108 results. Next