cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 38 results. Next

A048651 Decimal expansion of Product_{k >= 1} (1 - 1/2^k).

Original entry on oeis.org

2, 8, 8, 7, 8, 8, 0, 9, 5, 0, 8, 6, 6, 0, 2, 4, 2, 1, 2, 7, 8, 8, 9, 9, 7, 2, 1, 9, 2, 9, 2, 3, 0, 7, 8, 0, 0, 8, 8, 9, 1, 1, 9, 0, 4, 8, 4, 0, 6, 8, 5, 7, 8, 4, 1, 1, 4, 7, 4, 1, 0, 6, 6, 1, 8, 4, 9, 0, 2, 2, 4, 0, 9, 0, 6, 8, 4, 7, 0, 1, 2, 5, 7, 0, 2, 4, 2, 8, 4, 3, 1, 9, 3, 3, 4, 8, 0, 7, 8, 2
Offset: 0

Views

Author

Keywords

Comments

This is the limiting probability that a large random binary matrix is nonsingular (cf. A002884).
This constant is very close to 2^(13/24) * sqrt(Pi/log(2)) / exp(Pi^2/(6*log(2))) = 0.288788095086602421278899775042039398383022429351580356839... - Vaclav Kotesovec, Aug 21 2018
This constant is irrational (see Penn link). - Paolo Xausa, Dec 09 2024

Examples

			(1/2)*(3/4)*(7/8)*(15/16)*... = 0.288788095086602421278899721929230780088911904840685784114741...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 318, 354-361.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Product[1 - 1/2^i, {i, 100}], 10, 111][[1]] (* Robert G. Wilson v, May 25 2011 *)
    RealDigits[QPochhammer[1/2], 10, 100][[1]] (* Jean-François Alcover, Nov 18 2015 *)
  • PARI
    default(realprecision, 20080); x=prodinf(k=1, -1/2^k, 1); x*=10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b048651.txt", n, " ", d)); \\ Harry J. Smith, May 07 2009

Formula

exp(-Sum_{k>0} sigma_1(k)/k*2^(-k)) = exp(-Sum_{k>0} A000203(k)/k*2^(-k)). - Hieronymus Fischer, Jul 28 2007
From Hieronymus Fischer, Aug 13 2007: (Start)
Equals lim inf Product_{k=0..floor(log_2(n))} floor(n/2^k)*2^k/n for n->oo.
Equals lim inf A098844(n)/n^(1+floor(log_2(n)))*2^(1/2*(1+floor(log_2(n)))*floor(log_2(n))) for n->oo.
Equals lim inf A098844(n)/n^(1+floor(log_2(n)))*2^A000217(floor(log_2(n))) for n->oo.
Equals lim inf A098844(n)/(n+1)^((1+log_2(n+1))/2) for n->oo.
Equals (1/2)*exp(-Sum_{n>0} 2^(-n)*Sum_{k|n} 1/(k*2^k)). (End)
Limit of A177510(n)/A000079(n-1) as n->infinity (conjecture). - Mats Granvik, Mar 27 2011
Product_{k >= 1} (1-1/2^k) = (1/2; 1/2){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 27 2015
exp(Sum_{n>=1}(1/n/(1 - 2^n))) (according to Mathematica). - Mats Granvik, Sep 07 2016
(Sum_{k>0} (4^k-1)/(Product_{i=1..k} ((4^i-1)*(2*4^i-1))))*2 = 2/7 + 2/(3*7*31) + 2/(3*7*15*31*127)+2/(3*7*15*31*63*127*511) + ... (conjecture). - Werner Schulte, Dec 22 2016
Equals Sum_{k=-oo..oo} (-1)^k/2^((3*k+1)*k/2) (by Euler's pentagonal number theorem). - Amiram Eldar, Aug 13 2020
From Peter Bala, Dec 15 2020: (Start)
Constant C = Sum_{n >= 0} (-1)^n/( Product_{k = 1..n} (2^k - 1) ). The above conjectural result by Schulte follows by adding terms of this series in pairs.
C = (1/2)*Sum_{n >= 0} (-1/2)^n/( Product_{k = 1..n} (2^k - 1) ).
C = (3/8)*Sum_{n >= 0} (-1/4)^n/( Product_{k = 1..n} (2^k - 1) ).
1/C = Sum_{n >= 0} 2^(n*(n-1)/2)/( Product_{k = 1..n} (2^k - 1) ).
C = 1 - Sum_{n >= 0} (1/2)^(n+1)*Product_{k = 1..n} (1 - 1/2^k).
This latter identity generalizes as:
C = Sum_{n >= 0} (1/4)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*C = 1 - Sum_{n >= 0} (1/8)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*7*C = 6 + Sum_{n >= 0} (1/16)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*7*15*C = 91 - Sum_{n >= 0} (1/32)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
and so on, where the sequence [1, 0, 1, 6, 91, ...] is A005327.
(End)
From Amiram Eldar, Feb 19 2022: (Start)
Equals sqrt(2*Pi/log(2)) * exp(log(2)/24 - Pi^2/(6*log(2))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(2))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A005329(n).
Equals exp(-A335764). (End)
Equals 1/A065446. - Hugo Pfoertner, Nov 23 2024

Extensions

Corrected by Hieronymus Fischer, Jul 28 2007

A132038 Decimal expansion of Product_{k>0} (1-1/10^k).

Original entry on oeis.org

8, 9, 0, 0, 1, 0, 0, 9, 9, 9, 9, 8, 9, 9, 9, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.8900100999989990000001000...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; Clear[p]; p[n_] := p[n] = RealDigits[Product[1-1/10^k , {k, 1, n}], 10, digits] // First; p[10]; p[n=20]; While[p[n] != p[n/2], n = 2*n]; p[n] (* Jean-François Alcover, Feb 17 2014 *)
    RealDigits[QPochhammer[1/10], 10, 105][[1]] (* Jean-François Alcover, Nov 18 2015 *)
    N[QPochhammer[1/10,1/10]] (* G. C. Greubel, Nov 30 2015 *)
  • PARI
    prodinf(x=1,-.1^x,1) \\ Charles R Greathouse IV, Nov 16 2013

Formula

Equals exp( -Sum_{n>0} sigma_1(n)/(n*10^n) ).
Equals (1/10; 1/10){infinity}, where (a; q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 30 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(2*Pi/log(10)) * exp(log(10)/24 - Pi^2/(6*log(10))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(10))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027878(n). (End)

A100221 Decimal expansion of Product_{k>=1} (1-1/4^k).

Original entry on oeis.org

6, 8, 8, 5, 3, 7, 5, 3, 7, 1, 2, 0, 3, 3, 9, 7, 1, 5, 4, 5, 6, 5, 1, 4, 3, 5, 7, 2, 9, 3, 5, 0, 8, 1, 8, 4, 6, 7, 5, 5, 4, 9, 8, 1, 9, 3, 7, 8, 3, 3, 5, 7, 3, 5, 3, 4, 0, 1, 5, 7, 2, 3, 2, 5, 7, 7, 5, 3, 3, 1, 9, 8, 4, 5, 0, 7, 9, 8, 6, 7, 5, 1, 2, 4, 8, 0, 3, 3, 4, 6, 0, 4, 8, 1, 4, 2, 8, 8, 7, 9, 0, 5
Offset: 0

Views

Author

Eric W. Weisstein, Nov 09 2004

Keywords

Examples

			0.68853753712033971545651435729350818467554981937833...
		

Crossrefs

Programs

  • Mathematica
    EllipticThetaPrime[1, 0, 1/2]^(1/3)/2^(1/4)
    N[QPochhammer[1/4]] (* G. C. Greubel, Nov 30 2015 *)
    RealDigits[Fold[Times,1-1/4^Range[1000]],10,110][[1]] (* Harvey P. Dale, Sep 27 2024 *)
  • PARI
    prodinf(x=1, 1-1/4^x) \\ Altug Alkan, Dec 01 2015

Formula

Equals exp(-Sum_{k>0} sigma_1(k)/(k*4^k)) where sigma_1() is A000203(). - Hieronymus Fischer, Aug 07 2007
Equals (1/4; 1/4){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 30 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(Pi/log(2)) * exp(log(2)/12 - Pi^2/(12*log(2))) * Product_{k>=1} (1 - exp(-2*k*Pi^2/log(2))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027637(n). (End)

A053290 Number of nonsingular n X n matrices over GF(3).

Original entry on oeis.org

1, 2, 48, 11232, 24261120, 475566474240, 84129611558952960, 134068444202678083338240, 1923442429811445711790394572800, 248381049201184165590947520186915225600, 288678833735376059528974260112416365258106470400
Offset: 0

Views

Author

Stephen G Penrice, Mar 04 2000

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [&*[(3^n - 3^k): k in [0..n-1]]: n in [1..9]]; // Bruno Berselli, Jan 28 2013
    
  • Mathematica
    Table[Product[3^n - 3^k, {k, 0, n - 1}], {n, 0, 10}] (* Geoffrey Critzer, Jan 26 2013; edited by Vincenzo Librandi, Jan 28 2013 *)
  • PARI
    for(n=0,10, print1(prod(k=0,n-1, 3^n - 3^k), ", ")) \\ G. C. Greubel, May 31 2018

Formula

a(n) = Product_{k=0..n-1}(3^n-3^k). - corrected by Michel Marcus, Sep 18 2015
a(n) = A047656(n)*A027871(n). - Bruno Berselli, Jan 30 2013
From Amiram Eldar, Jul 06 2025: (Start)
a(n) = Product_{k=1..n} A219205(k).
a(n) ~ c * 3^(n^2), where c = A100220. (End)

Extensions

More terms from Vladeta Jovovic, Mar 16 2000

A259149 Decimal expansion of phi(exp(-2*Pi)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function.

Original entry on oeis.org

9, 9, 8, 1, 2, 9, 0, 6, 9, 9, 2, 5, 9, 5, 8, 5, 1, 3, 2, 7, 9, 9, 6, 2, 3, 2, 2, 2, 4, 5, 2, 7, 3, 8, 7, 8, 1, 3, 0, 7, 3, 8, 4, 3, 5, 3, 6, 5, 8, 1, 6, 4, 6, 1, 7, 5, 4, 0, 7, 8, 1, 4, 0, 2, 8, 2, 9, 9, 8, 5, 8, 0, 4, 6, 6, 0, 1, 9, 2, 8, 0, 7, 3, 5, 7, 1, 8, 2, 4, 4, 7, 3, 8, 7, 7, 7, 3, 7, 9, 3, 7, 7, 1, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 19 2015

Keywords

Examples

			0.99812906992595851327996232224527387813073843536581646175407814028299858...
		

Crossrefs

Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A368211 phi(exp(-Pi/16)), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259147 phi(exp(-Pi/2)), A259148 phi(exp(-Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-2Pi]], 10, 104] // First

Formula

phi(q) = QPochhammer(q,q) = (q;q)_infinity.
phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u.
phi(exp(-2*Pi)) = exp(Pi/12)*Gamma(1/4)/(2*Pi^(3/4)).

A259148 Decimal expansion of phi(exp(-Pi)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function.

Original entry on oeis.org

9, 5, 4, 9, 1, 8, 7, 8, 9, 9, 8, 7, 6, 7, 4, 1, 0, 3, 7, 5, 1, 2, 3, 3, 9, 7, 8, 1, 1, 0, 2, 9, 1, 0, 7, 7, 6, 3, 2, 7, 1, 5, 3, 7, 3, 8, 0, 7, 8, 0, 5, 2, 8, 3, 1, 4, 8, 7, 9, 9, 1, 9, 1, 6, 7, 6, 0, 9, 4, 0, 3, 5, 6, 8, 6, 7, 1, 4, 5, 3, 9, 5, 3, 4, 9, 8, 1, 5, 1, 8, 6, 7, 4, 4, 6, 1, 0, 9, 8, 7, 6, 7, 4, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 19 2015

Keywords

Examples

			0.954918789987674103751233978110291077632715373807805283148799191676094...
		

Crossrefs

Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A368211 phi(exp(-Pi/16)), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259147 phi(exp(-Pi/2)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-Pi]], 10, 104] // First

Formula

phi(q) = QPochhammer(q,q) = (q;q)_infinity.
phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u.
phi(exp(-Pi)) = exp(Pi/24)*Gamma(1/4)/(2^(7/8)*Pi^(3/4)).
Equals 1/exp(A255695). - Hugo Pfoertner, May 28 2025

A259150 Decimal expansion of phi(exp(-4*Pi)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function.

Original entry on oeis.org

9, 9, 9, 9, 9, 6, 5, 1, 2, 6, 4, 5, 4, 8, 2, 2, 3, 4, 2, 9, 5, 0, 9, 8, 9, 1, 6, 8, 5, 2, 1, 1, 9, 2, 4, 7, 6, 5, 7, 5, 0, 9, 7, 8, 9, 3, 2, 6, 3, 4, 5, 8, 4, 8, 4, 4, 7, 7, 3, 2, 6, 9, 1, 0, 0, 4, 7, 2, 0, 1, 5, 2, 5, 7, 6, 7, 4, 4, 8, 2, 0, 3, 2, 6, 8, 9, 6, 2, 4, 9, 7, 3, 0, 1, 1, 9, 7, 2, 8, 1, 0, 8, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 19 2015

Keywords

Examples

			0.99999651264548223429509891685211924765750978932634584844773269100472...
		

Crossrefs

Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259147 phi(exp(-Pi/2)), A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-4*Pi]], 10, 103] // First

Formula

phi(q) = QPochhammer(q,q) = (q;q)_infinity.
phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u.
phi(exp(-4*Pi)) = exp(Pi/6)*Gamma(1/4)/(2^(11/8)*Pi^(3/4)).
A259150 = A259148 * exp(Pi/8)/sqrt(2). - Vaclav Kotesovec, Jul 03 2017

A132027 a(n) = Product_{k=0..floor(log_3(n))} floor(n/3^k), n>=1.

Original entry on oeis.org

1, 2, 3, 4, 5, 12, 14, 16, 27, 30, 33, 48, 52, 56, 75, 80, 85, 216, 228, 240, 294, 308, 322, 384, 400, 416, 729, 756, 783, 900, 930, 960, 1089, 1122, 1155, 1728, 1776, 1824, 2028, 2080, 2132, 2352, 2408, 2464, 3375, 3450, 3525, 3840, 3920, 4000, 4335
Offset: 1

Views

Author

Hieronymus Fischer, Aug 13 2007, Aug 20 2007

Keywords

Comments

If n is written in base 3 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m= -2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).

Examples

			a(11)=floor(11/3^0)*floor(11/3^1)*floor(11/3^2)=11*3*1=33;
a(13)=52 since 13=111(base-3) and so a(13)=111*11*1(base-3)=13*4*1=52.
		

Crossrefs

For formulas regarding a general parameter p (i.e. terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132028(p=4)-A132033(p=9), A067080(p=10), A132263(p=11), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Programs

  • Mathematica
    Table[(f = If[# < 3, #, #*f[Quotient[#, 3]]] &)[n], {n, 51}] (* Ivan Neretin, May 29 2016 *)

Formula

Recurrence: a(n)=n*a(floor(n/3)); a(n*3^m)=n^m*3^(m(m+1)/2)*a(n).
a(k*3^m)=k^(m+1)*3^(m(m+1)/2), for k=1 or 2.
a(n)<=b(n), where b(n)=n^(1+floor(log_3(n)))/3^(1/2*(1+floor(log_3(n)))*floor(log_3(n))); equality holds if n is a power of 3 or two times a power of 3.
Also: a(n)<=2^((1-log_3(2))/2)*n^((1+log_3(n))/2)=1.1364507...*3^A000217(log_3(n)), equality for n=2*3^m, m>=0.
a(n)>c*b(n), where c=0.3826631966790330232889550... (see constant A132019).
Also: a(n)>c*2^((1-log_3(2))/2)*n^((1+log_3(n))/2)=0.434877...*3^A000217(log_3(n)).
lim inf a(n)/b(n)=0.3826631966790330232889550..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_3(n))/2)=0.3826631966790330232889550...*sqrt(2)/2^log_3(sqrt(2)), for n-->oo.
lim sup a(n)/n^((1+log_3(n))/2)=sqrt(2)/2^log_3(sqrt(2)), for n-->oo.
lim inf a(n)/a(n+1)=0.3826631966790330232889550... for n-->oo (see constant A132019).
a(n)=O(n^((1+log_3(n))/2)).

A027871 a(n) = Product_{i=1..n} (3^i - 1).

Original entry on oeis.org

1, 2, 16, 416, 33280, 8053760, 5863137280, 12816818094080, 84078326697164800, 1654829626053597593600, 97714379759212830706892800, 17309711516825516108403231948800
Offset: 0

Views

Author

Keywords

Comments

2*(10)^m|a(n) where 4*m <= n <= 4*m+3 for m >= 1. - G. C. Greubel, Nov 20 2015
Given probability p = 1/3^n that an outcome will occur at the n-th stage of an infinite process, then starting at n=1, 1-a(n)/A047656(n+1) is the probability that the outcome has occurred at or before the n-th iteration. The limiting ratio is 1-A100220 ~ 0.4398739. - Bob Selcoe, Mar 01 2016

Crossrefs

Cf. A005329 (q=2), A027637 (q=4), A027872 (q=5), A027873 (q=6), A027875 (q=7), A027876 (q=8), A027877 (q=9), A027878 (q=10), A027879 (q=11), A027880 (q=12).

Programs

Formula

a(n) ~ c * 3^(n*(n+1)/2), where c = A100220 = Product_{k>=1} (1-1/3^k) = 0.560126077927948944969792243314140014379736333798... . - Vaclav Kotesovec, Nov 21 2015
a(n) = 3^(binomial(n+1,2))*(1/3;1/3){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 24 2015
a(n) = Product_{i=1..n} A024023(i). - Michel Marcus, Dec 27 2015
G.f.: Sum_{n>=0} 3^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 3^k*x). - Ilya Gutkovskiy, May 22 2017
From Amiram Eldar, Feb 19 2022: (Start)
Sum_{n>=0} 1/a(n) = A132324.
Sum_{n>=0} (-1)^n/a(n) = A100220. (End)

A132034 Decimal expansion of Product_{k>0} (1-1/6^k).

Original entry on oeis.org

8, 0, 5, 6, 8, 7, 7, 2, 8, 1, 6, 2, 1, 6, 4, 9, 4, 0, 9, 2, 3, 7, 5, 0, 2, 1, 5, 4, 9, 6, 2, 9, 8, 9, 6, 8, 9, 1, 7, 9, 9, 7, 6, 2, 8, 6, 9, 3, 9, 2, 6, 6, 9, 2, 0, 8, 5, 7, 5, 6, 8, 1, 0, 0, 7, 2, 1, 9, 4, 1, 0, 5, 4, 8, 2, 0, 3, 6, 2, 0, 2, 0, 4, 5, 6, 3, 0, 4, 3, 7, 7, 0, 0, 5, 3, 2, 8, 0, 2, 7, 5, 2, 1
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.805687728162164940923750...
		

Crossrefs

Programs

  • Mathematica
    digits = 103; NProduct[1-1/6^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+20] // N[#, digits+20]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    N[QPochhammer[1/6,1/6]] (* G. C. Greubel, Nov 30 2015 *)
  • PARI
    prodinf(x=1, 1-(1/6)^x) \\ Altug Alkan, Dec 01 2015

Formula

Equals exp( -Sum_{n>0} sigma_1(n)/(n*6^n) ).
Equals (1/6; 1/6){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 30 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(2*Pi/log(6)) * exp(log(6)/24 - Pi^2/(6*log(6))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(6))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027873(n). (End)
Showing 1-10 of 38 results. Next