cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A005329 a(n) = Product_{i=1..n} (2^i - 1). Also called 2-factorial numbers.

Original entry on oeis.org

1, 1, 3, 21, 315, 9765, 615195, 78129765, 19923090075, 10180699028325, 10414855105976475, 21319208401933844325, 87302158405919092510875, 715091979502883286756577125, 11715351900195736886933003038875, 383876935713713710574133710574817125
Offset: 0

Views

Author

Keywords

Comments

Conjecture: this sequence is the inverse binomial transform of A075272 or, equivalently, the inverse binomial transform of the BinomialMean transform of A075271. - John W. Layman, Sep 12 2002
To win a game, you must flip n+1 heads in a row, where n is the total number of tails flipped so far. Then the probability of winning for the first time after n tails is A005329 / A006125. The probability of having won before n+1 tails is A114604 / A006125. - Joshua Zucker, Dec 14 2005
Number of upper triangular n X n (0,1)-matrices with no zero rows. - Vladeta Jovovic, Mar 10 2008
Equals the q-Fibonacci series for q = (-2), and the series prefaced with a 1: (1, 1, 1, 3, 21, ...) dot (1, -2, 4, -8, ...) if n is even, and (-1, 2, -4, 8, ...) if n is odd. For example, a(3) = 21 = (1, 1, 1, 3) dot (-1, 2, -4, 8) = (-1, 2, -4, 24) and a(4) = 315 = (1, 1, 1, 3, 21) dot (1, -2, 4, -8 16) = (1, -2, 4, -24, 336). - Gary W. Adamson, Apr 17 2009
Number of chambers in an A_n(K) building where K=GF(2) is the field of two elements. This is also the number of maximal flags in an n-dimensional vector space over a field of two elements. - Marcos Spreafico, Mar 22 2012
Given probability p = 1/2^n that an outcome will occur at the n-th stage of an infinite process, then starting at n=1, A114604(n)/A006125(n+2) = 1-a(n)/A006125(n+1) is the probability that the outcome has occurred up to and including the n-th iteration. The limiting ratio is 1-A048651 ~ 0.7112119. These observations are a more formal and generalized statement of Joshua Zucker's Dec 14, 2005 comment. - Bob Selcoe, Mar 02 2016
Also the number of dominating sets in the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017
Empirical: Letting Q denote the Hall-Littlewood Q basis of the symmetric functions over the field of fractions of the univariate polynomial ring in t over the field of rational numbers, and letting h denote the complete homogeneous basis, a(n) is equal to the absolute value of 2^A000292(n) times the coefficient of h_{1^(n*(n+1)/2)} in Q_{(n, n-1, ..., 1)} with t evaluated at 1/2. - John M. Campbell, Apr 30 2018
The series f(x) = Sum_{n>=0} x^(2^n-1)/a(n) satisfies f'(x) = f(x^2), f(0) = 1. - Lucas Larsen, Jan 05 2022

Examples

			G.f. = 1 + x + 3*x^2 + 21*x^3 + 315*x^4 + 9765*x^5 + 615195*x^6 + 78129765*x^7 + ...
		

References

  • Annie Cuyt, Vigdis Brevik Petersen, Brigitte Verdonk, Haakon Waadeland, and William B. Jones, Handbook of continued fractions for special functions, Springer, New York, 2008. (see 19.2.1)
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 358.
  • Mark Ronan, Lectures on Buildings (Perspectives in Mathematics; Vol. 7), Academic Press Inc., 1989.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A048651, A079555, A152476 (inverse binomial transform).
Column q=2 of A069777.

Programs

  • GAP
    List([0..15],n->Product([1..n],i->2^i-1)); # Muniru A Asiru, May 18 2018
  • Magma
    [1] cat [&*[ 2^k-1: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Dec 24 2015
    
  • Maple
    A005329 := proc(n) option remember; if n<=1 then 1 else (2^n-1)*procname(n-1); end if; end proc: seq(A005329(n), n=0..15);
  • Mathematica
    a[0] = 1; a[n_] := a[n] = (2^n-1)*a[n-1]; a /@ Range[0,14] (* Jean-François Alcover, Apr 22 2011 *)
    FoldList[Times, 1, 2^Range[15] - 1] (* Harvey P. Dale, Dec 21 2011 *)
    Table[QFactorial[n, 2], {n, 0, 14}] (* Arkadiusz Wesolowski, Oct 30 2012 *)
    QFactorial[Range[0, 10], 2] (* Eric W. Weisstein, Jul 14 2017 *)
    a[ n_] := If[ n < 0, 0, (-1)^n QPochhammer[ 2, 2, n]]; (* Michael Somos, Jan 28 2018 *)
  • PARI
    a(n)=polcoeff(sum(m=0,n,2^(m*(m+1)/2)*x^m/prod(k=0,m,1+2^k*x+x*O(x^n))),n) \\ Paul D. Hanna, Sep 17 2009
    
  • PARI
    Dx(n,F)=local(D=F);for(i=1,n,D=deriv(D));D
    a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+sum(k=1,n,x^k/k!*Dx(k,x*A+x*O(x^n) ))); polcoeff(A,n) \\ Paul D. Hanna, Apr 21 2012
    
  • PARI
    {a(n) = if( n<0, 0, prod(k=1, n, 2^k - 1))}; /* Michael Somos, Jan 28 2018 */
    
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sum(k=0, n+1, (-1)^k * 2^(k*(k+1)/2) * prod(j=1, k, (2^(n+1-j) - 1) / (2^j - 1))))}; /* Michael Somos, Jan 28 2018 */
    

Formula

a(n)/2^(n*(n+1)/2) -> c = 0.2887880950866024212788997219294585937270... (see A048651, A048652).
From Paul D. Hanna, Sep 17 2009: (Start)
G.f.: Sum_{n>=0} 2^(n*(n+1)/2) * x^n / (Product_{k=0..n} (1+2^k*x)).
Compare to: 1 = Sum_{n>=0} 2^(n*(n+1)/2) * x^n/(Product_{k=1..n+1} (1+2^k*x)). (End)
G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n/n! * d^n/dx^n x*A(x). - Paul D. Hanna, Apr 21 2012
a(n) = 2^(binomial(n+1,2))*(1/2; 1/2){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 23 2015
a(n) = Product_{i=1..n} A000225(i). - Michel Marcus, Dec 27 2015
From Peter Bala, Nov 10 2017: (Start)
O.g.f. as a continued fraction of Stieltjes' type: A(x) = 1/(1 - x/(1 - 2*x/(1 - 6*x/(1 - 12*x/(1 - 28*x/(1 - 56*x/(1 - ... -(2^n - 2^floor(n/2))*x/(1 - ... )))))))) (follows from Heine's continued fraction for the ratio of two q-hypergeometric series at q = 2. See Cuyt et al. 19.2.1).
A(x) = 1/(1 + x - 2*x/(1 - (2 - 1)^2*x/(1 + x - 2^3*x/(1 - (2^2 - 1)^2*x/(1 + x - 2^5*x/(1 - (2^3 - 1)^2*x/(1 + x - 2^7*x/(1 - (2^4 - 1)^2*x/(1 + x - ... ))))))))). (End)
0 = a(n)*(a(n+1) - a(n+2)) + 2*a(n+1)^2 for all n>=0. - Michael Somos, Feb 23 2019
From Amiram Eldar, Feb 19 2022: (Start)
Sum_{n>=0} 1/a(n) = A079555.
Sum_{n>=0} (-1)^n/a(n) = A048651. (End)

Extensions

Better definition from Leslie Ann Goldberg (leslie(AT)dcs.warwick.ac.uk), Dec 11 1999

A100220 Decimal expansion of Product_{k>=1} (1 - 1/3^k).

Original entry on oeis.org

5, 6, 0, 1, 2, 6, 0, 7, 7, 9, 2, 7, 9, 4, 8, 9, 4, 4, 9, 6, 9, 7, 9, 2, 2, 4, 3, 3, 1, 4, 1, 4, 0, 0, 1, 4, 3, 7, 9, 7, 3, 6, 3, 3, 3, 7, 9, 8, 3, 6, 2, 4, 6, 4, 4, 6, 2, 9, 5, 6, 2, 9, 7, 3, 1, 7, 5, 3, 3, 9, 6, 3, 0, 8, 9, 0, 3, 3, 7, 9, 4, 7, 0, 7, 7, 1, 6, 9, 1, 8, 7, 7, 0, 5, 3, 6, 7, 4, 3, 3, 4, 8
Offset: 0

Views

Author

Eric W. Weisstein, Nov 09 2004

Keywords

Comments

Limit of the probability that a random N X N matrix, with entries chosen independently and uniformly from the field F_3, is nonsingular [Morrison (2006)]. - L. Edson Jeffery, Jan 22 2012

Examples

			0.56012607792794894496979224331414001437973633379836...
		

Crossrefs

Programs

  • Mathematica
    N[(3^(1/24)*EllipticThetaPrime[1, 0, 1/Sqrt[3]]^(1/3))/2^(1/3)]
    N[QPochhammer[1/3,1/3]] (* G. C. Greubel, Nov 27 2015 *)

Formula

exp(-Sum_{k > 0} sigma_1(k)/k/3^k) = exp(-Sum_{k > 0} A000203(k)/k/3^k). - Hieronymus Fischer, Aug 07 2007
Product_{k >= 1} (1 - 1/3^k) = (1/3; 1/3){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 27 2015
From Peter Bala, Jan 18 2021: (Start)
Constant C = (1 - 1/3)*Sum_{n >= 0} (-1/3)^n/Product_{k = 1..n} (3^k - 1);
C = (1 - 1/3)*(1 - 1/9)*Sum_{n >= 0} (-1/9)^n/Product_{k = 1..n} (3^k - 1);
C = (1 - 1/3)*(1 - 1/9)*(1 - 1/27)*Sum_{n >= 0} (-1/27)^n/Product_{k = 1..n} (3^k - 1), and so on. (End)
From Amiram Eldar, Feb 19 2022: (Start)
Equals sqrt(2*Pi/log(3)) * exp(log(3)/24 - Pi^2/(6*log(3))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(3))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027871(n). (End)

A053290 Number of nonsingular n X n matrices over GF(3).

Original entry on oeis.org

1, 2, 48, 11232, 24261120, 475566474240, 84129611558952960, 134068444202678083338240, 1923442429811445711790394572800, 248381049201184165590947520186915225600, 288678833735376059528974260112416365258106470400
Offset: 0

Views

Author

Stephen G Penrice, Mar 04 2000

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [&*[(3^n - 3^k): k in [0..n-1]]: n in [1..9]]; // Bruno Berselli, Jan 28 2013
    
  • Mathematica
    Table[Product[3^n - 3^k, {k, 0, n - 1}], {n, 0, 10}] (* Geoffrey Critzer, Jan 26 2013; edited by Vincenzo Librandi, Jan 28 2013 *)
  • PARI
    for(n=0,10, print1(prod(k=0,n-1, 3^n - 3^k), ", ")) \\ G. C. Greubel, May 31 2018

Formula

a(n) = Product_{k=0..n-1}(3^n-3^k). - corrected by Michel Marcus, Sep 18 2015
a(n) = A047656(n)*A027871(n). - Bruno Berselli, Jan 30 2013
From Amiram Eldar, Jul 06 2025: (Start)
a(n) = Product_{k=1..n} A219205(k).
a(n) ~ c * 3^(n^2), where c = A100220. (End)

Extensions

More terms from Vladeta Jovovic, Mar 16 2000

A022167 Triangle of Gaussian binomial coefficients [ n,k ] for q = 3.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 40, 130, 40, 1, 1, 121, 1210, 1210, 121, 1, 1, 364, 11011, 33880, 11011, 364, 1, 1, 1093, 99463, 925771, 925771, 99463, 1093, 1, 1, 3280, 896260, 25095280, 75913222, 25095280, 896260, 3280, 1
Offset: 0

Views

Author

Keywords

Comments

The coefficients of the matrix inverse are apparently given by T^(-1)(n,k) = (-1)^n*A157783(n,k). - R. J. Mathar, Mar 12 2013

Examples

			Triangle begins:
  1;
  1,    1;
  1,    4,      1;
  1,   13,     13,        1;
  1,   40,    130,       40,        1;
  1,  121,   1210,     1210,      121,        1;
  1,  364,  11011,    33880,    11011,      364,      1;
  1, 1093,  99463,   925771,   925771,    99463,   1093,    1;
  1, 3280, 896260, 25095280, 75913222, 25095280, 896260, 3280, 1;
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Columns k=0..3 give A000012, A003462, A006100, A006101.
Cf. A006117 (row sums).

Programs

Formula

T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017
T(n,k) = Sum_{j=0..k} C(n,j)*qStirling2(n-j,n-k,3)*(2)^(k-j),j,0,k), n >= k, where qStirling2(n,k,3) is triangle A333143. - Vladimir Kruchinin, Mar 07 2020
G.f. of column k: x^k * exp( Sum_{j>=1} f((k+1)*j)/f(j) * x^j/j ), where f(j) = 3^j - 1. - Seiichi Manyama, May 09 2025

A027637 a(n) = Product_{i=1..n} (4^i - 1).

Original entry on oeis.org

1, 3, 45, 2835, 722925, 739552275, 3028466566125, 49615367752825875, 3251543125681443718125, 852369269595510700600441875, 893773106866112632882108339078125, 3748755223447856814435325652920396921875
Offset: 0

Views

Author

Keywords

Comments

The q-analog of double factorials (A000165) evaluated at q=2. - Michael Somos, Sep 12 2014
3^n*5^(floor(n/2))|a(n) for n>=1. - G. C. Greubel, Nov 21 2015
Given probability p = 1/4^n that an outcome will occur at the n-th stage of an infinite process, then starting at n=1, 1-a(n)/A053763(n+1) is the probability that the outcome has occurred up to and including the n-th iteration. The limiting ratio is 1-A100221 ~ 0.3114625. - Bob Selcoe, Mar 01 2016

Crossrefs

Cf. A000165.
Sequences of the form q-Pochhammer(n, q, q): A005329 (q=2), A027871 (q=3), this sequence (q=4), A027872 (q=5), A027873 (q=6), A027875 (q=7), A027876 (q=8), A027877 (q=9), A027878 (q=10), A027879 (q=11), A027880 (q=12).

Programs

  • Magma
    [1] cat [&*[4^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
    
  • Maple
    A027637 := proc(n)
        mul( 4^i-1,i=1..n) ;
    end proc:
    seq(A027637(n),n=0..8) ;
  • Mathematica
    A027637 = Table[Product[4^i - 1, {i, n}], {n, 0, 9}] (* Alonso del Arte, Nov 14 2011 *)
    a[ n_] := If[ n < 0, 0, Product[ (q^(2 k) - 1) / (q - 1), {k, n}] /. q -> 2]; (* Michael Somos, Sep 12 2014 *)
    Abs@QPochhammer[4, 4, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *)
  • PARI
    a(n) = prod(i=1, n, 4^i-1); \\ Michel Marcus, Nov 21 2015
    
  • SageMath
    from sage.combinat.q_analogues import q_pochhammer
    def A027637(n): return (-1)^n*q_pochhammer(n, 4, 4)
    [A027637(n) for n in (0..15)] # G. C. Greubel, Aug 04 2022

Formula

a(n) ~ c * 2^(n*(n+1)), where c = Product_{k>=1} (1-1/4^k) = A100221 = 0.688537537120339715456514357293508184675549819378... . - Vaclav Kotesovec, Nov 21 2015
a(n) = 4^(binomial(n+1,2))*(1/4;1/4){n} = (4; 4){n}, where (a;q){n} is the q-Pochhammer symbol. - _G. C. Greubel, Dec 24 2015
G.f.: Sum_{n>=0} 4^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 4^k*x). - Ilya Gutkovskiy, May 22 2017
Sum_{n>=0} (-1)^n/a(n) = A100221. - Amiram Eldar, May 07 2023

A027878 a(n) = Product_{i=1..n} (10^i - 1).

Original entry on oeis.org

1, 9, 891, 890109, 8900199891, 890011088900109, 890010198889020099891, 8900101098880002109889900109, 890010100987899112108987901010099891, 890010100097889011121088788901111989989900109
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A005329 (q=2), A027871 (q=3), A027637 (q=4), A027872 (q=5), A027873 (q=6), A027875 (q=7), A027876 (q=8), A027877 (q=9), A027879 (q=11), A027880 (q=12).

Programs

  • Magma
    [1] cat [&*[10^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
  • Mathematica
    Table[Product[10^i-1,{i,n}],{n,0,10}] (* Harvey P. Dale, Aug 15 2011 *)
    Abs@QPochhammer[10, 10, Range[0, 30]] (* G. C. Greubel, Nov 24 2015 *)
  • PARI
    a(n) = prod(k=1, n, 10^k - 1) \\ Altug Alkan, Nov 25 2015
    

Formula

a(n) ~ c * 10^(n*(n+1)/2), where c = Product_{k>=1} (1-1/10^k) = A132038 = 0.890010099998999000000100009999999989999900000000... . - Vaclav Kotesovec, Nov 21 2015
3^n*(11)^(floor(n/2)) divides a(n) for n>=0. - G. C. Greubel, Nov 24 2015
Equals 10^(binomial(n+1,2))*(1/10;1/10){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 24 2015
G.f.: Sum_{n>=0} 10^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 10^k*x). - Ilya Gutkovskiy, May 22 2017
From Amiram Eldar, May 07 2023: (Start)
Sum_{n>=0} 1/a(n) = A132326.
Sum_{n>=0} (-1)^n/a(n) = A132038. (End)

A027872 a(n) = Product_{i=1..n} (5^i - 1).

Original entry on oeis.org

1, 4, 96, 11904, 7428096, 23205371904, 362560730628096, 28324694519589371904, 11064305472020078810628096, 21609960560733744406929189371904, 211034749490954911990173458030810628096
Offset: 0

Views

Author

Keywords

Comments

Given probability p = 1/5^n that an outcome will occur at the n-th stage of an infinite process, then starting at n=1, 1 - a(n)/A109345(n+1) is the probability that the outcome has occurred at or before the n-th iteration. The limiting ratio is 1-A100222 ~ 0.2396672. - Bob Selcoe, Mar 01 2016

Crossrefs

Cf. A005329 (q=2), A027871 (q=3), A027637 (q=4), A027873 (q=6), A027875 (q=7), A027876 (q=8), A027877 (q=9), A027878 (q=10), A027879 (q=11), A027880 (q=12).

Programs

Formula

4^n|a(n) for n >= 1. - G. C. Greubel, Nov 21 2015
a(n) ~ c * 5^(n*(n+1)/2), where c = Product_{k>=1} (1-1/5^k) = A100222 . - Vaclav Kotesovec, Nov 21 2015
a(n) = 5^(binomial(n+1,2))*(1/5; 1/5){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 23 2015
a(n) = Product_{i=1..n} A024049(i). - Michel Marcus, Dec 27 2015
G.f.: Sum_{n>=0} 5^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 5^k*x). - Ilya Gutkovskiy, May 22 2017
Sum_{n>=0} (-1)^n/a(n) = A100222. - Amiram Eldar, May 07 2023

A027873 a(n) = Product_{i=1..n} (6^i - 1).

Original entry on oeis.org

1, 5, 175, 37625, 48724375, 378832015625, 17674407688984375, 4947685316415841015625, 8310206472731792807458984375, 83747726219216824716765369541015625
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A005329 (q=2), A027871 (q=3), A027637 (q=4), A027872 (q=5), A027875 (q=7), A027876 (q=8), A027877 (q=9), A027878 (q=10), A027879 (q=11), A027880 (q=12).
Cf. A132034.

Programs

Formula

5^n|a(n) for n>=0. - G. C. Greubel, Nov 20 2015
a(n) ~ c * 6^(n*(n+1)/2), where c = Product_{k>=1} (1-1/6^k) = A132034 = 0.805687728162164940923750215496298968917997628693... . - Vaclav Kotesovec, Nov 21 2015
a(n) = 6^(binomial(n+1,2))*(1/6;1/6){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 24 2015
a(n) = Product_{i=1..n} A024062(i). - Michel Marcus, Dec 27 2015
G.f.: Sum_{n>=0} 6^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 6^k*x). - Ilya Gutkovskiy, May 22 2017
Sum_{n>=0} (-1)^n/a(n) = A132034. - Amiram Eldar, May 07 2023

A027875 a(n) = Product_{i=1..n} (7^i - 1).

Original entry on oeis.org

1, 6, 288, 98496, 236390400, 3972777062400, 467389275837235200, 384914699001548351078400, 2218956256804125934296760320000, 89542886518308517126993353029713920000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A005329 (q=2), A027871 (q=3), A027637 (q=4), A027872 (q=5), A027873 (q=6), A027876 (q=8), A027877 (q=9), A027878 (q=10), A027879 (q=11), A027880 (q=12).
Cf. A132035.

Programs

Formula

2*(10)^(2m)|a(n) where 4*m <= n <= 4*m+3, for m >= 1. - G. C. Greubel, Nov 20 2015
a(n) ~ c * 7^(n*(n+1)/2), where c = Product_{k>=1} (1-1/7^k) = A132035 = 0.836795407089037871026729798146136241352436435876... . - Vaclav Kotesovec, Nov 21 2015
a(n) = 7^(binomial(n+1,2))*(1/7;1/7){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 24 2015
a(n) = Product_{i=1..n} A024075(i). - Michel Marcus, Dec 27 2015
G.f.: Sum_{n>=0} 7^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 7^k*x). - Ilya Gutkovskiy, May 22 2017
Sum_{n>=0} (-1)^n/a(n) = A132035. - Amiram Eldar, May 07 2023

A027876 a(n) = Product_{i=1..n} (8^i - 1).

Original entry on oeis.org

1, 7, 441, 225351, 922812345, 30237792108615, 7926625536728661945, 16623330670976050126618695, 278893192683059452825059069034425, 37432410397693271164043156886536608251975
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A005329 (q=2), A027871 (q=3), A027637 (q=4), A027872 (q=5), A027873 (q=6), A027875 (q=7), A027877 (q=9), A027878 (q=10), A027879 (q=11), A027880 (q=12).
Cf. A132036.

Programs

Formula

a(n) ~ c * 8^(n*(n+1)/2), where c = Product_{k>=1} (1-1/8^k) = A132036 = 0.859405994400702866200758580064418894909484979588... . - Vaclav Kotesovec, Nov 21 2015
7^n | a(n). - G. C. Greubel, Nov 21 2015
It appears that 7^m | a(n) iff 7^m | (7n)!. - Robert Israel, Dec 24 2015
a(n) = 8^(binomial(n+1,2))*(1/8;1/8){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 24 2015
G.f. g(x) satisfies (1+x) g(x) = 1 + 8 x g(8x). - Robert Israel, Dec 24 2015
a(n) = Product_{i=1..n} A024088(i). - Michel Marcus, Dec 27 2015
G.f.: Sum_{n>=0} 8^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 8^k*x). - Ilya Gutkovskiy, May 22 2017
Sum_{n>=0} (-1)^n/a(n) = A132036. - Amiram Eldar, May 07 2023
Showing 1-10 of 24 results. Next