A027871
a(n) = Product_{i=1..n} (3^i - 1).
Original entry on oeis.org
1, 2, 16, 416, 33280, 8053760, 5863137280, 12816818094080, 84078326697164800, 1654829626053597593600, 97714379759212830706892800, 17309711516825516108403231948800
Offset: 0
-
[1] cat [&*[ 3^k-1: k in [1..n] ]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
A027871 := proc(n)
mul( 3^i-1,i=1..n) ;
end proc:
seq(A027871(n),n=0..8) ; # R. J. Mathar, Jul 13 2017
-
Table[Product[(3^k-1),{k,1,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 17 2015 *)
Abs@QPochhammer[3, 3, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *)
-
a(n) = prod(i=1, n, 3^i-1); \\ Michel Marcus, Nov 21 2015
A027637
a(n) = Product_{i=1..n} (4^i - 1).
Original entry on oeis.org
1, 3, 45, 2835, 722925, 739552275, 3028466566125, 49615367752825875, 3251543125681443718125, 852369269595510700600441875, 893773106866112632882108339078125, 3748755223447856814435325652920396921875
Offset: 0
Sequences of the form q-Pochhammer(n, q, q):
A005329 (q=2),
A027871 (q=3), this sequence (q=4),
A027872 (q=5),
A027873 (q=6),
A027875 (q=7),
A027876 (q=8),
A027877 (q=9),
A027878 (q=10),
A027879 (q=11),
A027880 (q=12).
-
[1] cat [&*[4^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
A027637 := proc(n)
mul( 4^i-1,i=1..n) ;
end proc:
seq(A027637(n),n=0..8) ;
-
A027637 = Table[Product[4^i - 1, {i, n}], {n, 0, 9}] (* Alonso del Arte, Nov 14 2011 *)
a[ n_] := If[ n < 0, 0, Product[ (q^(2 k) - 1) / (q - 1), {k, n}] /. q -> 2]; (* Michael Somos, Sep 12 2014 *)
Abs@QPochhammer[4, 4, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *)
-
a(n) = prod(i=1, n, 4^i-1); \\ Michel Marcus, Nov 21 2015
-
from sage.combinat.q_analogues import q_pochhammer
def A027637(n): return (-1)^n*q_pochhammer(n, 4, 4)
[A027637(n) for n in (0..15)] # G. C. Greubel, Aug 04 2022
A027878
a(n) = Product_{i=1..n} (10^i - 1).
Original entry on oeis.org
1, 9, 891, 890109, 8900199891, 890011088900109, 890010198889020099891, 8900101098880002109889900109, 890010100987899112108987901010099891, 890010100097889011121088788901111989989900109
Offset: 0
-
[1] cat [&*[10^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
Table[Product[10^i-1,{i,n}],{n,0,10}] (* Harvey P. Dale, Aug 15 2011 *)
Abs@QPochhammer[10, 10, Range[0, 30]] (* G. C. Greubel, Nov 24 2015 *)
-
a(n) = prod(k=1, n, 10^k - 1) \\ Altug Alkan, Nov 25 2015
A027872
a(n) = Product_{i=1..n} (5^i - 1).
Original entry on oeis.org
1, 4, 96, 11904, 7428096, 23205371904, 362560730628096, 28324694519589371904, 11064305472020078810628096, 21609960560733744406929189371904, 211034749490954911990173458030810628096
Offset: 0
-
[1] cat [&*[ 5^k-1: k in [1..n] ]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
A027872 := proc(n)
mul( 5^i-1, i=1..n) ;
end proc: # R. J. Mathar, Mar 12 2013
-
Table[Product[(5^k-1),{k,1,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 17 2015 *)
Abs@QPochhammer[5, 5, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *)
Join[{1},FoldList[Times,5^Range[10]-1]] (* Harvey P. Dale, Dec 28 2021 *)
-
a(n) = prod(i=1, n, 5^i-1); \\ Michel Marcus, Nov 21 2015
A027873
a(n) = Product_{i=1..n} (6^i - 1).
Original entry on oeis.org
1, 5, 175, 37625, 48724375, 378832015625, 17674407688984375, 4947685316415841015625, 8310206472731792807458984375, 83747726219216824716765369541015625
Offset: 0
-
[1] cat [&*[ 6^k-1: k in [1..n] ]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
Table[Product[(6^k-1),{k,1,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 17 2015 *)
Abs@QPochhammer[6, 6, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *)
FoldList[Times,Join[{1},6^Range[10]-1]] (* Harvey P. Dale, Oct 13 2017 *)
-
a(n) = prod(i=1, n, 6^i-1); \\ Michel Marcus, Nov 21 2015
A027875
a(n) = Product_{i=1..n} (7^i - 1).
Original entry on oeis.org
1, 6, 288, 98496, 236390400, 3972777062400, 467389275837235200, 384914699001548351078400, 2218956256804125934296760320000, 89542886518308517126993353029713920000
Offset: 0
-
[1] cat [&*[ 7^k-1: k in [1..n] ]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
Abs@QPochhammer[7, 7, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *)
Table[Product[7^k-1,{k,n}],{n,0,10}] (* Harvey P. Dale, Jul 28 2022 *)
-
a(n) = prod(i=1, n, 7^i-1); \\ Michel Marcus, Nov 21 2015
A027877
a(n) = Product_{i=1..n} (9^i - 1).
Original entry on oeis.org
1, 8, 640, 465920, 3056435200, 180476385689600, 95912370410881024000, 458745798479390789599232000, 19747501938318761090457052119040000, 7650586837724400321220283274999910891520000
Offset: 0
A027879
a(n) = Product_{i=1..n} (11^i - 1).
Original entry on oeis.org
1, 10, 1200, 1596000, 23365440000, 3763004112000000, 6666387564654720000000, 129909027758312519942400000000, 27847153692160782464830528512000000000, 65662131721505488121539650946349537280000000000
Offset: 0
-
[1] cat [&*[11^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
seq(mul(11^i-1,i=1..n),n=0..20; # Robert Israel, Nov 24 2015
-
FoldList[Times,1,11^Range[10]-1] (* Harvey P. Dale, Aug 13 2013 *)
Abs@QPochhammer[11, 11, Range[0, 40]] (* G. C. Greubel, Nov 24 2015 *)
-
a(n)=prod(i=1,n,11^i-1) \\ Anders Hellström, Nov 21 2015
A022172
Triangle of Gaussian binomial coefficients [ n,k ] for q = 8.
Original entry on oeis.org
1, 1, 1, 1, 9, 1, 1, 73, 73, 1, 1, 585, 4745, 585, 1, 1, 4681, 304265, 304265, 4681, 1, 1, 37449, 19477641, 156087945, 19477641, 37449, 1, 1, 299593, 1246606473, 79936505481, 79936505481, 1246606473, 299593, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 9, 1;
1, 73, 73, 1;
1, 585, 4745, 585, 1;
1, 4681, 304265, 304265, 4681, 1;
1, 37449, 19477641, 156087945, 19477641, 37449, 1;
1, 299593, 1246606473, 79936505481, 79936505481, 1246606473, 299593, 1;
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
- G. C. Greubel, Rows n=0..50 of triangle, flattened
- R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- Index entries for sequences related to Gaussian binomial coefficients
-
A027876 := proc(n)
mul(8^i-1,i=1..n) ;
end proc:
A022172 := proc(n,m)
A027876(n)/A027876(m)/A027876(n-m) ;
end proc: # R. J. Mathar, Jul 19 2017
-
a027878[n_]:=Times@@ Table[8^i - 1, {i, n}]; T[n_, m_]:=a027878[n]/( a027878[m] a027878[n - m]); Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten (* Indranil Ghosh, Jul 20 2017 *)
Table[QBinomial[n,k,8], {n,0,10}, {k,0,n}]//Flatten (* or *) q:= 8; T[n_, 0]:= 1; T[n_,n_]:= 1; T[n_,k_]:= T[n,k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1,k]]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, May 27 2018 *)
-
{q=8; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || nG. C. Greubel, May 27 2018
-
from operator import mul
def a027878(n): return 1 if n==0 else reduce(mul, [8**i - 1 for i in range(1, n + 1)])
def T(n, m): return a027878(n)//(a027878(m)*a027878(n - m))
for n in range(11): print([T(n, m) for m in range(n + 1)]) # Indranil Ghosh, Jul 20 2017
A027880
a(n) = Product_{i=1..n} (12^i - 1).
Original entry on oeis.org
1, 11, 1573, 2716571, 56328099685, 14016177372718235, 41852067359921313500005, 1499635200191700040518673659035, 644815685260091508353787979063721364325, 3327107302821620489265827570792988872583047378075
Offset: 0
-
[1] cat [&*[12^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
FoldList[Times,1,12^Range[10]-1] (* Harvey P. Dale, Mar 01 2015 *)
Abs@QPochhammer[12, 12, Range[0, 30]] (* G. C. Greubel, Nov 24 2015 *)
-
a(n) = prod(k=1, n, 12^k - 1) \\ Altug Alkan, Nov 25 2015
Showing 1-10 of 19 results.
Comments