A005329
a(n) = Product_{i=1..n} (2^i - 1). Also called 2-factorial numbers.
Original entry on oeis.org
1, 1, 3, 21, 315, 9765, 615195, 78129765, 19923090075, 10180699028325, 10414855105976475, 21319208401933844325, 87302158405919092510875, 715091979502883286756577125, 11715351900195736886933003038875, 383876935713713710574133710574817125
Offset: 0
G.f. = 1 + x + 3*x^2 + 21*x^3 + 315*x^4 + 9765*x^5 + 615195*x^6 + 78129765*x^7 + ...
- Annie Cuyt, Vigdis Brevik Petersen, Brigitte Verdonk, Haakon Waadeland, and William B. Jones, Handbook of continued fractions for special functions, Springer, New York, 2008. (see 19.2.1)
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 358.
- Mark Ronan, Lectures on Buildings (Perspectives in Mathematics; Vol. 7), Academic Press Inc., 1989.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..50
- E. Andresen and K. Kjeldsen, On certain subgraphs of a complete transitively directed graph, Discrete Math., Vol. 14, No. 2 (1976), pp. 103-119.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- Eric Weisstein's World of Mathematics, Dominating Set.
- Eric Weisstein's World of Mathematics, q-Factorial.
- Index entries for sequences related to factorial numbers.
Cf.
A000225,
A005321,
A006125,
A114604,
A006088,
A028362,
A027871 (3-fac),
A027872 (5-fac),
A027873 (6-fac),
A048651,
A048652,
A075271,
A075272,
A032085,
A122746.
-
List([0..15],n->Product([1..n],i->2^i-1)); # Muniru A Asiru, May 18 2018
-
[1] cat [&*[ 2^k-1: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Dec 24 2015
-
A005329 := proc(n) option remember; if n<=1 then 1 else (2^n-1)*procname(n-1); end if; end proc: seq(A005329(n), n=0..15);
-
a[0] = 1; a[n_] := a[n] = (2^n-1)*a[n-1]; a /@ Range[0,14] (* Jean-François Alcover, Apr 22 2011 *)
FoldList[Times, 1, 2^Range[15] - 1] (* Harvey P. Dale, Dec 21 2011 *)
Table[QFactorial[n, 2], {n, 0, 14}] (* Arkadiusz Wesolowski, Oct 30 2012 *)
QFactorial[Range[0, 10], 2] (* Eric W. Weisstein, Jul 14 2017 *)
a[ n_] := If[ n < 0, 0, (-1)^n QPochhammer[ 2, 2, n]]; (* Michael Somos, Jan 28 2018 *)
-
a(n)=polcoeff(sum(m=0,n,2^(m*(m+1)/2)*x^m/prod(k=0,m,1+2^k*x+x*O(x^n))),n) \\ Paul D. Hanna, Sep 17 2009
-
Dx(n,F)=local(D=F);for(i=1,n,D=deriv(D));D
a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+sum(k=1,n,x^k/k!*Dx(k,x*A+x*O(x^n) ))); polcoeff(A,n) \\ Paul D. Hanna, Apr 21 2012
-
{a(n) = if( n<0, 0, prod(k=1, n, 2^k - 1))}; /* Michael Somos, Jan 28 2018 */
-
{a(n) = if( n<0, 0, (-1)^n * sum(k=0, n+1, (-1)^k * 2^(k*(k+1)/2) * prod(j=1, k, (2^(n+1-j) - 1) / (2^j - 1))))}; /* Michael Somos, Jan 28 2018 */
Better definition from Leslie Ann Goldberg (leslie(AT)dcs.warwick.ac.uk), Dec 11 1999
A027871
a(n) = Product_{i=1..n} (3^i - 1).
Original entry on oeis.org
1, 2, 16, 416, 33280, 8053760, 5863137280, 12816818094080, 84078326697164800, 1654829626053597593600, 97714379759212830706892800, 17309711516825516108403231948800
Offset: 0
-
[1] cat [&*[ 3^k-1: k in [1..n] ]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
A027871 := proc(n)
mul( 3^i-1,i=1..n) ;
end proc:
seq(A027871(n),n=0..8) ; # R. J. Mathar, Jul 13 2017
-
Table[Product[(3^k-1),{k,1,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 17 2015 *)
Abs@QPochhammer[3, 3, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *)
-
a(n) = prod(i=1, n, 3^i-1); \\ Michel Marcus, Nov 21 2015
A027637
a(n) = Product_{i=1..n} (4^i - 1).
Original entry on oeis.org
1, 3, 45, 2835, 722925, 739552275, 3028466566125, 49615367752825875, 3251543125681443718125, 852369269595510700600441875, 893773106866112632882108339078125, 3748755223447856814435325652920396921875
Offset: 0
Sequences of the form q-Pochhammer(n, q, q):
A005329 (q=2),
A027871 (q=3), this sequence (q=4),
A027872 (q=5),
A027873 (q=6),
A027875 (q=7),
A027876 (q=8),
A027877 (q=9),
A027878 (q=10),
A027879 (q=11),
A027880 (q=12).
-
[1] cat [&*[4^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
A027637 := proc(n)
mul( 4^i-1,i=1..n) ;
end proc:
seq(A027637(n),n=0..8) ;
-
A027637 = Table[Product[4^i - 1, {i, n}], {n, 0, 9}] (* Alonso del Arte, Nov 14 2011 *)
a[ n_] := If[ n < 0, 0, Product[ (q^(2 k) - 1) / (q - 1), {k, n}] /. q -> 2]; (* Michael Somos, Sep 12 2014 *)
Abs@QPochhammer[4, 4, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *)
-
a(n) = prod(i=1, n, 4^i-1); \\ Michel Marcus, Nov 21 2015
-
from sage.combinat.q_analogues import q_pochhammer
def A027637(n): return (-1)^n*q_pochhammer(n, 4, 4)
[A027637(n) for n in (0..15)] # G. C. Greubel, Aug 04 2022
A027878
a(n) = Product_{i=1..n} (10^i - 1).
Original entry on oeis.org
1, 9, 891, 890109, 8900199891, 890011088900109, 890010198889020099891, 8900101098880002109889900109, 890010100987899112108987901010099891, 890010100097889011121088788901111989989900109
Offset: 0
-
[1] cat [&*[10^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
Table[Product[10^i-1,{i,n}],{n,0,10}] (* Harvey P. Dale, Aug 15 2011 *)
Abs@QPochhammer[10, 10, Range[0, 30]] (* G. C. Greubel, Nov 24 2015 *)
-
a(n) = prod(k=1, n, 10^k - 1) \\ Altug Alkan, Nov 25 2015
A022169
Triangle of Gaussian binomial coefficients [ n,k ] for q = 5.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 31, 31, 1, 1, 156, 806, 156, 1, 1, 781, 20306, 20306, 781, 1, 1, 3906, 508431, 2558556, 508431, 3906, 1, 1, 19531, 12714681, 320327931, 320327931, 12714681, 19531, 1, 1, 97656, 317886556
Offset: 0
Triangle begins:
1;
1, 1;
1, 6, 1;
1, 31, 31, 1;
1, 156, 806, 156, 1;
1, 781, 20306, 20306, 781, 1;
1, 3906, 508431, 2558556, 508431, 3906, 1;
1, 19531, 12714681, 320327931, 320327931, 12714681, 19531, 1,
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
- G. C. Greubel, Rows n=0..50 of triangle, flattened
- R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- Index entries for sequences related to Gaussian binomial coefficients
-
A027872 := proc(n)
mul( 5^i-1, i=1..n) ;
end proc:
A022169 := proc(n, m)
A027872(n)/A027872(n-m)/A027872(m) ;
end proc: # R. J. Mathar, Mar 12 2013
-
p[n_] := Product[5^i-1, {i, 1, n}]; t[n_, k_] := p[n]/(p[k]*p[n-k]); Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
Table[QBinomial[n,k,5], {n,0,10}, {k,0,n}]//Flatten (* or *) q:= 5; T[n_, 0]:= 1; T[n_,n_]:= 1; T[n_,k_]:= T[n,k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1,k]]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, May 27 2018 *)
-
{q=5; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || nG. C. Greubel, May 27 2018
A027873
a(n) = Product_{i=1..n} (6^i - 1).
Original entry on oeis.org
1, 5, 175, 37625, 48724375, 378832015625, 17674407688984375, 4947685316415841015625, 8310206472731792807458984375, 83747726219216824716765369541015625
Offset: 0
-
[1] cat [&*[ 6^k-1: k in [1..n] ]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
Table[Product[(6^k-1),{k,1,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 17 2015 *)
Abs@QPochhammer[6, 6, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *)
FoldList[Times,Join[{1},6^Range[10]-1]] (* Harvey P. Dale, Oct 13 2017 *)
-
a(n) = prod(i=1, n, 6^i-1); \\ Michel Marcus, Nov 21 2015
A027875
a(n) = Product_{i=1..n} (7^i - 1).
Original entry on oeis.org
1, 6, 288, 98496, 236390400, 3972777062400, 467389275837235200, 384914699001548351078400, 2218956256804125934296760320000, 89542886518308517126993353029713920000
Offset: 0
-
[1] cat [&*[ 7^k-1: k in [1..n] ]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
Abs@QPochhammer[7, 7, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *)
Table[Product[7^k-1,{k,n}],{n,0,10}] (* Harvey P. Dale, Jul 28 2022 *)
-
a(n) = prod(i=1, n, 7^i-1); \\ Michel Marcus, Nov 21 2015
A027876
a(n) = Product_{i=1..n} (8^i - 1).
Original entry on oeis.org
1, 7, 441, 225351, 922812345, 30237792108615, 7926625536728661945, 16623330670976050126618695, 278893192683059452825059069034425, 37432410397693271164043156886536608251975
Offset: 0
-
[1] cat [&*[ 8^k-1: k in [1..n] ]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
seq(mul(8^i-1,i=1..n), n=0..20); # Robert Israel, Dec 24 2015
-
FoldList[Times,1,8^Range[10]-1] (* Harvey P. Dale, Dec 23 2011 *)
-
a(n)=prod(i=1,n,8^i-1) \\ Charles R Greathouse IV, Nov 22 2015
A027877
a(n) = Product_{i=1..n} (9^i - 1).
Original entry on oeis.org
1, 8, 640, 465920, 3056435200, 180476385689600, 95912370410881024000, 458745798479390789599232000, 19747501938318761090457052119040000, 7650586837724400321220283274999910891520000
Offset: 0
A027879
a(n) = Product_{i=1..n} (11^i - 1).
Original entry on oeis.org
1, 10, 1200, 1596000, 23365440000, 3763004112000000, 6666387564654720000000, 129909027758312519942400000000, 27847153692160782464830528512000000000, 65662131721505488121539650946349537280000000000
Offset: 0
-
[1] cat [&*[11^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
seq(mul(11^i-1,i=1..n),n=0..20; # Robert Israel, Nov 24 2015
-
FoldList[Times,1,11^Range[10]-1] (* Harvey P. Dale, Aug 13 2013 *)
Abs@QPochhammer[11, 11, Range[0, 40]] (* G. C. Greubel, Nov 24 2015 *)
-
a(n)=prod(i=1,n,11^i-1) \\ Anders Hellström, Nov 21 2015
Showing 1-10 of 21 results.
Comments