cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 80 results. Next

A114604 Numerator of partial sums of A005329/A006125.

Original entry on oeis.org

1, 5, 43, 709, 23003, 1481957, 190305691, 48796386661, 25003673060507, 25613941912987493, 52467767892904362139, 214929296497738201165669, 1760788099067877263041671323, 28849467307107603960961499533157
Offset: 0

Views

Author

Joshua Zucker, Dec 14 2005

Keywords

Comments

To win a game, you must flip n+1 heads in a row, where n is the total number of tails flipped so far. The probability of having won before n+1 tails (that is, winning by flipping n+1 or fewer heads in a row) is a(n)/A006125(n). The probability of winning for the first time after n tails (that is, by flipping n+1 heads in a row) is A005329(n)/A006125(n).

Examples

			a(3) = 43 because 1/2 + 1/8 + 3/64 = 43/64, or because a(2) * 2^(2+1) + A005329(2) = 5 * 8 + 3 = 43.
		

Crossrefs

Programs

  • Mathematica
    Nest[Append[#1, #1[[-1]]*2^(#2 + 1) + Product[2^i - 1, {i, #2}]] & @@ {#, Length[#]} &, {1}, 13] (* Michael De Vlieger, Jul 15 2024 *)

Formula

a(n) = numerator(Sum_{k=0..n} A005329(k)/A006125(k)).
a(n) = a(n-1) * 2^(n+1) + A005329(n).

A152476 Inverse binomial transform of A005329.

Original entry on oeis.org

1, 0, 2, 14, 246, 8374, 560950, 74018118, 19314751526, 10004153405174, 10313935405968726, 21205201672407811750, 87047013055579706265862, 713958711370466820900197334, 11705348549229324549016264190006
Offset: 0

Views

Author

Vladeta Jovovic, Dec 05 2008

Keywords

Crossrefs

Cf. A075272.

Programs

  • Mathematica
    Table[Sum[(-1)^(n+k) Binomial[n, k] QFactorial[k, 2], {k, 0, n}], {n, 0, 15}] (* Vladimir Reshetnikov, Nov 20 2015 *)

Formula

a(n) ~ c * 2^(n*(n+1)/2), where c = A048651 = 0.2887880950866... . - Vaclav Kotesovec, Nov 21 2015

A277471 Normalized values of the Fabius function: 2^binomial(n-1, 2) * (2*n)! * A005329(n) * F(1/2^n).

Original entry on oeis.org

2, 1, 5, 105, 7007, 1298745, 619247475, 723733375365, 2006532782969715, 12889909959143502285, 188494585656727188486375, 6188497678605937441851529425, 451101946262511157576785806552415, 72341127537387548941434093006996374625, 25326487488712595887856341442148826764706875
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 16 2016

Keywords

Comments

The Fabius function F(x) is the smooth monotone increasing function on [0, 1] satisfying F(0) = 0, F(1) = 1, F'(x) = 2*F(2*x) for 0 < x < 1/2, F'(x) = 2*F(2*(1-x)) for 1/2 < x < 1. It is infinitely differentiable at every point in the interval, but is nowhere analytic. It assumes rational values at dyadic rationals.
Comment from Vladimir Reshetnikov, Jan 25 2017: I just realized that I do not have a rigorous proof that all terms are integers. Could somebody suggest a proof? I would also be very interested to learn the asymptotics of this sequence.
Juan Arias de Reyna proved that all terms are indeed integers. - Vladimir Reshetnikov, Feb 28 2017

References

  • Rvachev V. L., Rvachev V. A., Non-classical methods of the approximation theory in boundary value problems, Naukova Dumka, Kiev (1979) (in Russian), pages 117-125.

Crossrefs

Programs

  • Mathematica
    c[0] = 1; c[n_] := c[n] = Sum[(-1)^k c[n - k]/(2 k + 1)!, {k, 1, n}] / (4^n - 1); Table[2^(1 - 2 n) (2 n)! QFactorial[n, 2] Sum[c[k] (-1)^k/(n - 2 k)!, {k, 0, n/2}], {n, 0, 15}]

Formula

a(n) = 2^binomial(n-1, 2) * (2*n)! * A005329(n) * A272755(n) / A272757(n).

A006125 a(n) = 2^(n*(n-1)/2).

Original entry on oeis.org

1, 1, 2, 8, 64, 1024, 32768, 2097152, 268435456, 68719476736, 35184372088832, 36028797018963968, 73786976294838206464, 302231454903657293676544, 2475880078570760549798248448, 40564819207303340847894502572032, 1329227995784915872903807060280344576
Offset: 0

Views

Author

Keywords

Comments

Number of graphs on n labeled nodes; also number of outcomes of labeled n-team round-robin tournaments.
Number of perfect matchings of order n Aztec diamond. [see Speyer]
Number of Gelfand-Zeitlin patterns with bottom row [1,2,3,...,n]. [Zeilberger]
For n >= 1 a(n) is the size of the Sylow 2-subgroup of the Chevalley group A_n(2) (sequence A002884). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001
From James Propp: (Start)
a(n) is the number of ways to tile the region
o-----o
|.....|
o--o.....o--o
|...........|
o--o...........o--o
|.................|
o--o.................o--o
|.......................|
|.......................|
|.......................|
o--o.................o--o
|.................|
o--o...........o--o
|...........|
o--o.....o--o
|.....|
o-----o
(top-to-bottom distance = 2n) with dominoes like either of
o--o o-----o
|..| or |.....|
|..| o-----o
|..|
o--o
(End)
The number of domino tilings in A006253, A004003, A006125 is the number of perfect matchings in the relevant graphs. There are results of Jockusch and Ciucu that if a planar graph has a rotational symmetry then the number of perfect matchings is a square or twice a square - this applies to these 3 sequences. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 12 2001
Let M_n denotes the n X n matrix with M_n(i,j)=binomial(2i,j); then det(M_n)=a(n+1). - Benoit Cloitre, Apr 21 2002
Smallest power of 2 which can be expressed as the product of n distinct numbers (powers of 2), e.g., a(4) = 1024 = 2*4*8*16. Also smallest number which can be expressed as the product of n distinct powers. - Amarnath Murthy, Nov 10 2002
The number of binary relations that are both reflexive and symmetric on an n-element set. - Justin Witt (justinmwitt(AT)gmail.com), Jul 12 2005
The number of symmetric binary relations on an (n-1)-element set. - Peter Kagey, Feb 13 2021
To win a game, you must flip n+1 heads in a row, where n is the total number of tails flipped so far. Then the probability of winning for the first time after n tails is A005329 / A006125. The probability of having won before n+1 tails is A114604 / A006125. - Joshua Zucker, Dec 14 2005
a(n) = A126883(n-1)+1. - Zerinvary Lajos, Jun 12 2007
Equals right border of triangle A158474 (unsigned). - Gary W. Adamson, Mar 20 2009
a(n-1) is the number of simple labeled graphs on n nodes such that every node has even degree. - Geoffrey Critzer, Oct 21 2011
a(n+1) is the number of symmetric binary matrices of size n X n. - Nathan J. Russell, Aug 30 2014
Let T_n be the n X n matrix with T_n(i,j) = binomial(2i + j - 3, j-1); then det(T_n) = a(n). - Tony Foster III, Aug 30 2018
k^(n*(n-1)/2) is the determinant of n X n matrix T_(i,j) = binomial(k*i + j - 3, j-1), in this case k=2. - Tony Foster III, May 12 2019
Let B_n be the n+1 X n+1 matrix with B_n(i, j) = Sum_{m=max(0, j-i)..min(j, n-i)} (binomial(i, j-m) * binomial(n-i, m) * (-1)^m), 0<=i,j<=n. Then det B_n = a(n+1). Also, deleting the first row and any column from B_n results in a matrix with determinant a(n). The matrices B_n have the following property: B_n * [x^n, x^(n-1) * y, x^(n-2) * y^2, ..., y^n]^T = [(x-y)^n, (x-y)^(n-1) * (x+y), (x-y)^(n-2) * (x+y)^2, ..., (x+y)^n]^T. - Nicolas Nagel, Jul 02 2019
a(n) is the number of positive definite (-1,1)-matrices of size n X n. - Eric W. Weisstein, Jan 03 2021
a(n) is the number of binary relations on a labeled n-set that are both total and antisymmetric. - José E. Solsona, Feb 05 2023

Examples

			From _Gus Wiseman_, Feb 11 2021: (Start)
This sequence counts labeled graphs on n vertices. For example, the a(0) = 1 through a(2) = 8 graph edge sets are:
  {}  {}  {}    {}
          {12}  {12}
                {13}
                {23}
                {12,13}
                {12,23}
                {13,23}
                {12,13,23}
This sequence also counts labeled graphs with loops on n - 1 vertices. For example, the a(1) = 1 through a(3) = 8 edge sets are the following. A loop is represented as an edge with two equal vertices.
  {}  {}    {}
      {11}  {11}
            {12}
            {22}
            {11,12}
            {11,22}
            {12,22}
            {11,12,22}
(End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 547 (Fig. 9.7), 573.
  • G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 178.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 178.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 3, Eq. (1.1.2).
  • J. Propp, Enumeration of matchings: problems and progress, in: New perspectives in geometric combinatorics, L. Billera et al., eds., Mathematical Sciences Research Institute series, vol. 38, Cambridge University Press, 1999.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000568 for the unlabeled analog, A053763, A006253, A004003.
Cf. A001187 (connected labeled graphs).
Cf. A158474. - Gary W. Adamson, Mar 20 2009
Cf. A136652 (log). - Paul D. Hanna, Dec 04 2009
The unlabeled version is A000088, or A002494 without isolated vertices.
The directed version is A002416.
The covering case is A006129.
The version for hypergraphs is A058891, or A016031 without singletons.
Row sums of A143543.
The case of connected edge set is A287689.

Programs

Formula

Sequence is given by the Hankel transform of A001003 (Schroeder's numbers) = 1, 1, 3, 11, 45, 197, 903, ...; example: det([1, 1, 3, 11; 1, 3, 11, 45; 3, 11, 45, 197; 11, 45, 197, 903]) = 2^6 = 64. - Philippe Deléham, Mar 02 2004
a(n) = 2^floor(n^2/2)/2^floor(n/2). - Paul Barry, Oct 04 2004
G.f. satisfies: A(x) = 1 + x*A(2x). - Paul D. Hanna, Dec 04 2009
a(n) = 2 * a(n-1)^2 / a(n-2). - Michael Somos, Dec 30 2012
G.f.: G(0)/x - 1/x, where G(k) = 1 + 2^(k-1)*x/(1 - 1/(1 + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2013
E.g.f. satisfies A'(x) = A(2x). - Geoffrey Critzer, Sep 07 2013
Sum_{n>=1} 1/a(n) = A299998. - Amiram Eldar, Oct 27 2020
a(n) = s_lambda(1,1,...,1) where s is the Schur polynomial in n variables and lambda is the partition (n,n-1,n-2,...,1). - Leonid Bedratyuk, Feb 06 2022
a(n) = Product_{1 <= j <= i <= n-1} (i + j)/(2*i - 2*j + 1). Cf. A007685. - Peter Bala, Oct 25 2024

Extensions

More terms from Vladeta Jovovic, Apr 09 2000

A048651 Decimal expansion of Product_{k >= 1} (1 - 1/2^k).

Original entry on oeis.org

2, 8, 8, 7, 8, 8, 0, 9, 5, 0, 8, 6, 6, 0, 2, 4, 2, 1, 2, 7, 8, 8, 9, 9, 7, 2, 1, 9, 2, 9, 2, 3, 0, 7, 8, 0, 0, 8, 8, 9, 1, 1, 9, 0, 4, 8, 4, 0, 6, 8, 5, 7, 8, 4, 1, 1, 4, 7, 4, 1, 0, 6, 6, 1, 8, 4, 9, 0, 2, 2, 4, 0, 9, 0, 6, 8, 4, 7, 0, 1, 2, 5, 7, 0, 2, 4, 2, 8, 4, 3, 1, 9, 3, 3, 4, 8, 0, 7, 8, 2
Offset: 0

Views

Author

Keywords

Comments

This is the limiting probability that a large random binary matrix is nonsingular (cf. A002884).
This constant is very close to 2^(13/24) * sqrt(Pi/log(2)) / exp(Pi^2/(6*log(2))) = 0.288788095086602421278899775042039398383022429351580356839... - Vaclav Kotesovec, Aug 21 2018
This constant is irrational (see Penn link). - Paolo Xausa, Dec 09 2024

Examples

			(1/2)*(3/4)*(7/8)*(15/16)*... = 0.288788095086602421278899721929230780088911904840685784114741...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 318, 354-361.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Product[1 - 1/2^i, {i, 100}], 10, 111][[1]] (* Robert G. Wilson v, May 25 2011 *)
    RealDigits[QPochhammer[1/2], 10, 100][[1]] (* Jean-François Alcover, Nov 18 2015 *)
  • PARI
    default(realprecision, 20080); x=prodinf(k=1, -1/2^k, 1); x*=10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b048651.txt", n, " ", d)); \\ Harry J. Smith, May 07 2009

Formula

exp(-Sum_{k>0} sigma_1(k)/k*2^(-k)) = exp(-Sum_{k>0} A000203(k)/k*2^(-k)). - Hieronymus Fischer, Jul 28 2007
From Hieronymus Fischer, Aug 13 2007: (Start)
Equals lim inf Product_{k=0..floor(log_2(n))} floor(n/2^k)*2^k/n for n->oo.
Equals lim inf A098844(n)/n^(1+floor(log_2(n)))*2^(1/2*(1+floor(log_2(n)))*floor(log_2(n))) for n->oo.
Equals lim inf A098844(n)/n^(1+floor(log_2(n)))*2^A000217(floor(log_2(n))) for n->oo.
Equals lim inf A098844(n)/(n+1)^((1+log_2(n+1))/2) for n->oo.
Equals (1/2)*exp(-Sum_{n>0} 2^(-n)*Sum_{k|n} 1/(k*2^k)). (End)
Limit of A177510(n)/A000079(n-1) as n->infinity (conjecture). - Mats Granvik, Mar 27 2011
Product_{k >= 1} (1-1/2^k) = (1/2; 1/2){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 27 2015
exp(Sum_{n>=1}(1/n/(1 - 2^n))) (according to Mathematica). - Mats Granvik, Sep 07 2016
(Sum_{k>0} (4^k-1)/(Product_{i=1..k} ((4^i-1)*(2*4^i-1))))*2 = 2/7 + 2/(3*7*31) + 2/(3*7*15*31*127)+2/(3*7*15*31*63*127*511) + ... (conjecture). - Werner Schulte, Dec 22 2016
Equals Sum_{k=-oo..oo} (-1)^k/2^((3*k+1)*k/2) (by Euler's pentagonal number theorem). - Amiram Eldar, Aug 13 2020
From Peter Bala, Dec 15 2020: (Start)
Constant C = Sum_{n >= 0} (-1)^n/( Product_{k = 1..n} (2^k - 1) ). The above conjectural result by Schulte follows by adding terms of this series in pairs.
C = (1/2)*Sum_{n >= 0} (-1/2)^n/( Product_{k = 1..n} (2^k - 1) ).
C = (3/8)*Sum_{n >= 0} (-1/4)^n/( Product_{k = 1..n} (2^k - 1) ).
1/C = Sum_{n >= 0} 2^(n*(n-1)/2)/( Product_{k = 1..n} (2^k - 1) ).
C = 1 - Sum_{n >= 0} (1/2)^(n+1)*Product_{k = 1..n} (1 - 1/2^k).
This latter identity generalizes as:
C = Sum_{n >= 0} (1/4)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*C = 1 - Sum_{n >= 0} (1/8)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*7*C = 6 + Sum_{n >= 0} (1/16)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*7*15*C = 91 - Sum_{n >= 0} (1/32)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
and so on, where the sequence [1, 0, 1, 6, 91, ...] is A005327.
(End)
From Amiram Eldar, Feb 19 2022: (Start)
Equals sqrt(2*Pi/log(2)) * exp(log(2)/24 - Pi^2/(6*log(2))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(2))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A005329(n).
Equals exp(-A335764). (End)
Equals 1/A065446. - Hugo Pfoertner, Nov 23 2024

Extensions

Corrected by Hieronymus Fischer, Jul 28 2007

A002884 Number of nonsingular n X n matrices over GF(2) (order of the group GL(n,2)); order of Chevalley group A_n (2); order of projective special linear group PSL_n(2).

Original entry on oeis.org

1, 1, 6, 168, 20160, 9999360, 20158709760, 163849992929280, 5348063769211699200, 699612310033197642547200, 366440137299948128422802227200, 768105432118265670534631586896281600, 6441762292785762141878919881400879415296000, 216123289355092695876117433338079655078664339456000
Offset: 0

Views

Author

Keywords

Comments

Also number of bases for GF(2^n) over GF(2).
Also (apparently) number of n X n matrices over GF(2) having permanent = 1. - Hugo Pfoertner, Nov 14 2003
The previous comment is true because over GF(2) permanents and determinants are the same. - Joerg Arndt, Mar 07 2008
The number of automorphisms of (Z_2)^n (the direct product of n copies of Z_2). - Peter Eastwood, Apr 06 2015
Note that n! divides a(n) since the subgroup of GL(n,2) consisting of all permutation matrices is isomorphic to S_n (the n-th symmetric group). - Jianing Song, Oct 29 2022
The number of boolean operations on n bits, or quantum operations on n qubits, that can be constructed using only CNOT (controlled NOT) gates. - David Radcliffe, Jul 06 2025

Examples

			PSL_2(2) is isomorphic to the symmetric group S_3 of order 6.
		

References

  • Roger W. Carter, Simple groups of Lie type. Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. viii+331pp. MR0407163 (53 #10946). See page 2.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
  • K. J. Horadam, Hadamard matrices and their applications. Princeton University Press, Princeton, NJ, 2007. xiv+263 pp. See p. 132.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A316622 and A316623.
Cf. A006516, A048651, A203303. Row sums of A381854.

Programs

  • Magma
    [1] cat [(&*[2^n -2^k: k in [0..n-1]]): n in [1..15]]; // G. C. Greubel, Aug 31 2023
    
  • Maple
    # First program
    A002884:= n-> mul(2^n - 2^i, i=0..n-1);
    seq(A002884(n), n = 0..12);
    # Second program
    A002884:= n-> 2^(n*(n-1)/2) * mul( 2^i - 1, i=1..n);
    seq(A002884(n), n=0..12);
  • Mathematica
    Table[Product[2^n-2^i,{i,0,n-1}],{n,0,13}] (* Harvey P. Dale, Aug 07 2011 *)
    Table[2^(n*(n-1)/2) QPochhammer[2, 2, n] // Abs, {n, 0, 11}] (* Jean-François Alcover, Jul 15 2017 *)
  • PARI
    a(n)=prod(i=2,n,2^i-1)<Charles R Greathouse IV, Jan 13 2012
    
  • SageMath
    [product(2^n -2^j for j in range(n)) for n in range(16)] # G. C. Greubel, Aug 31 2023

Formula

a(n) = Product_{i=0..n-1} (2^n-2^i).
a(n) = 2^(n*(n-1)/2) * Product_{i=1..n} (2^i - 1).
a(n) = A203303(n+1)/A203303(n). - R. J. Mathar, Jan 06 2012
a(n) = (6*a(n-1)^2*a(n-3) - 8*a(n-1)*a(n-2)^2) / (a(n-2)*a(n-3)) for n > 2. - Seiichi Manyama, Oct 20 2016
a(n) ~ A048651 * 2^(n^2). - Vaclav Kotesovec, May 19 2020
a(n) = A006125(n) * A005329(n). - John Keith, Jun 30 2021
a(n) = Product_{k=1..n} A006516(k). - Amiram Eldar, Jul 06 2025

A022166 Triangle of Gaussian binomial coefficients (or q-binomial coefficients) [n,k] for q = 2.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 35, 15, 1, 1, 31, 155, 155, 31, 1, 1, 63, 651, 1395, 651, 63, 1, 1, 127, 2667, 11811, 11811, 2667, 127, 1, 1, 255, 10795, 97155, 200787, 97155, 10795, 255, 1, 1, 511, 43435, 788035, 3309747, 3309747, 788035, 43435, 511, 1
Offset: 0

Views

Author

Keywords

Comments

Also number of distinct binary linear [n,k] codes.
Row sums give A006116.
Central terms are A006098.
T(n,k) is the number of subgroups of the Abelian group (C_2)^n that have order 2^k. - Geoffrey Critzer, Mar 28 2016
T(n,k) is the number of k-subspaces of the finite vector space GF(2)^n. - Jianing Song, Jan 31 2020

Examples

			Triangle begins:
  1;
  1,   1;
  1,   3,    1;
  1,   7,    7,     1;
  1,  15,   35,    15,     1;
  1,  31,  155,   155,    31,    1;
  1,  63,  651,  1395,   651,   63,   1;
  1, 127, 2667, 11811, 11811, 2667, 127, 1;
		

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. A006516, A218449, A135950 (matrix inverse), A000225 (k=1), A006095 (k=2), A006096 (k=3), A139382.
Cf. this sequence (q=2), A022167 (q=3), A022168 (q=4), A022169 (q=5), A022170 (q=6), A022171 (q=7), A022172 (q=8), A022173 (q=9), A022174 (q=10), A022175 (q=11), A022176 (q=12), A022177 (q=13), A022178 (q=14), A022179 (q=15), A022180 (q=16), A022181 (q=17), A022182 (q=18), A022183 (q=19), A022184 (q=20), A022185 (q=21), A022186 (q=22), A022187 (q=23), A022188 (q=24).
Analogous triangles for other q: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15).

Programs

  • Magma
    q:=2; [[k le 0 select 1 else (&*[(1-q^(n-j))/(1-q^(j+1)): j in [0..(k-1)]]): k in [0..n]]: n in [0..20]]; // G. C. Greubel, Nov 17 2018
  • Maple
    A005329 := proc(n)
       mul( 2^i-1,i=1..n) ;
    end proc:
    A022166 := proc(n,m)
       A005329(n)/A005329(n-m)/A005329(m) ;
    end proc: # R. J. Mathar, Nov 14 2011
  • Mathematica
    Table[QBinomial[n, k, 2], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)
    (* S stands for qStirling2 *) S[n_, k_, q_] /; 1 <= k <= n := S[n - 1, k - 1, q] + Sum[q^j, {j, 0, k - 1}]*S[n - 1, k, q]; S[n_, 0, ] := KroneckerDelta[n, 0]; S[0, k, ] := KroneckerDelta[0, k]; S[, , ] = 0;
    T[n_, k_] /; n >= k := Sum[Binomial[n, j]*S[n - j, n - k, q]*(q - 1)^(k - j) /. q -> 2, {j, 0, k}];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 08 2020, after Vladimir Kruchinin *)
  • PARI
    T(n,k)=polcoeff(x^k/prod(j=0,k,1-2^j*x+x*O(x^n)),n) \\ Paul D. Hanna, Oct 28 2006
    
  • PARI
    qp = matpascal(9,2);
    for(n=1,#qp,for(k=1,n,print1(qp[n,k],", "))) \\ Gerald McGarvey, Dec 05 2009
    
  • PARI
    {q=2; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || nG. C. Greubel, May 27 2018
    
  • Sage
    def T(n,k): return gaussian_binomial(n,k).subs(q=2) # Ralf Stephan, Mar 02 2014
    

Formula

G.f.: A(x,y) = Sum_{k>=0} y^k/Product_{j=0..k} (1 - 2^j*x). - Paul D. Hanna, Oct 28 2006
For k = 1,2,3,... the expansion of exp( Sum_{n >= 1} (2^(k*n) - 1)/(2^n - 1)*x^n/n ) gives the o.g.f. for the k-th diagonal of the triangle (k = 1 corresponds to the main diagonal). - Peter Bala, Apr 07 2015
T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017
T(m+n,k) = Sum_{i=0..k} q^((k-i)*(m-i)) * T(m,i) * T(n,k-i), q=2 (see the Sved link, page 337). - Werner Schulte, Apr 09 2019
T(n,k) = Sum_{j=0..k} qStirling2(n-j,n-k)*C(n,j) where qStirling2(n,k) is A139382. - Vladimir Kruchinin, Mar 04 2020

A028362 Total number of self-dual binary codes of length 2n. Totally isotropic spaces of index n in symplectic geometry of dimension 2n.

Original entry on oeis.org

1, 3, 15, 135, 2295, 75735, 4922775, 635037975, 163204759575, 83724041661975, 85817142703524375, 175839325399521444375, 720413716161839357604375, 5902349576513949856852644375, 96709997811181068404530578084375
Offset: 1

Views

Author

Keywords

Comments

These numbers appear in the second column of A155103. - Mats Granvik, Jan 20 2009
a(n) = n terms in the sequence (1, 2, 4, 8, 16, ...) dot n terms in the sequence (1, 1, 3, 15, 135). Example: a(5) = 2295 = (1, 2, 4, 8, 16) dot (1, 1, 3, 15, 135) = (1 + 2 + 12 + 120 + 2160). - Gary W. Adamson, Aug 02 2010

Examples

			G.f. = x + 3*x^2 + 15*x^3 + 135*x^4 + 2295*x^5 + 75735*x^6 + 4922775*x^7 + ...
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 630.

Crossrefs

Cf. A155103. - Mats Granvik, Jan 20 2009
Cf. A005329, A006088. - Paul D. Hanna, Sep 16 2009

Programs

  • Magma
    [1] cat [&*[ 2^k+1: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Dec 24 2015
    
  • Maple
    seq(mul(1 + 2^j, j = 1..n-1), n = 1..20); # G. C. Greubel, Jun 06 2020
  • Mathematica
    Table[Product[2^i+1,{i,n-1}],{n,15}] (* or *) FoldList[Times,1, 2^Range[15]+1] (* Harvey P. Dale, Nov 21 2011 *)
    Table[QPochhammer[-2, 2, n - 1], {n, 15}] (* Arkadiusz Wesolowski, Oct 29 2012 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,2^(m*(m-1)/2)*x^m/prod(k=0,m-1,1-2^k*x+x*O(x^n))),n)} \\ Paul D. Hanna, Sep 16 2009
    
  • PARI
    {a(n) = if( n<1, 0 , prod(k=1, n-1, 2^k + 1))}; /* Michael Somos, Jan 28 2018 */
    
  • PARI
    {a(n) = sum(k=0, n-1, 2^(k*(k+1)/2) * prod(j=1, k, (2^(n-j) - 1) / (2^j - 1)))}; /* Michael Somos, Jan 28 2018 */
    
  • Python
    for n in range(2,40,2):
      product = 1
      for i in range(1,n//2-1 + 1):
        product *= (2**i+1)
      print(product)
    # Nathan J. Russell, Mar 01 2016
    
  • Python
    from math import prod
    def A028362(n): return prod((1<Chai Wah Wu, Jun 20 2022
    
  • Sage
    from ore_algebra import *
    R. = QQ['x']
    A. = OreAlgebra(R, 'Qx', q=2)
    print((Qx - x - 1).to_list([0,1], 10))  # Ralf Stephan, Apr 24 2014
    
  • Sage
    from sage.combinat.q_analogues import q_pochhammer
    [q_pochhammer(n-1,-2,2) for n in (1..20)] # G. C. Greubel, Jun 06 2020
    
  • Scheme
    ;; With memoization-macro definec.
    (define (A028362 n) (A028362off0 (- n 1)))
    (definec (A028362off0 n) (if (zero? n) 1 (+ (A028362off0 (- n 1)) (* (expt 2 n) (A028362off0 (- n 1))))))
    ;; Antti Karttunen, Apr 15 2017

Formula

a(n) = Product_{i=1..n-1} (2^i+1).
Letting a(0)=1, we have a(n) = Sum_{k=0..n-1} 2^k*a(k) for n>0. a(n) is asymptotic to c*sqrt(2)^(n^2-n) where c=2.384231029031371724149899288.... = A079555 = Product_{k>=1} (1 + 1/2^k). - Benoit Cloitre, Jan 25 2003
G.f.: Sum_{n>=1} 2^(n*(n-1)/2) * x^n/(Product_{k=0..n-1} (1-2^k*x)). - Paul D. Hanna, Sep 16 2009
a(n) = 2^(binomial(n,2) - 1)*(-1; 1/2){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 23 2015
From Antti Karttunen, Apr 15 2017: (Start)
a(n) = A048675(A285101(n-1)).
a(n) = b(n-1), where b(0) = 1, and for n > 0, b(n) = b(n-1) + (2^n)*b(n-1).
a(n) = Sum_{i=1..A000124(n-1)} A053632(n-1,i-1)*(2^(i-1)) [where the indexing of both rows and columns of irregular table A053632(row,col) is considered to start from zero].
(End)
G.f. A(x) satisfies: A(x) = x * (1 + A(2*x)) / (1 - x). - Ilya Gutkovskiy, Jun 06 2020
Conjectural o.g.f. as a continued fraction of Stieltjes type (S-fraction):
1/(1 - 3*x/(1 - 2*x/(1 - 10*x/(1 - 12*x/(1 - 36*x/(1 - 56*x/(1 - 136*x/(1 - 240*x/(1 - ... - 2^(n-1)*(2^n + 1)*x/(1 - 2^n*(2^n - 1)*x/(1 - ... ))))))))))). - Peter Bala, Sep 27 2023

A006116 Sum of Gaussian binomial coefficients [n,k] for q=2 and k=0..n.

Original entry on oeis.org

1, 2, 5, 16, 67, 374, 2825, 29212, 417199, 8283458, 229755605, 8933488744, 488176700923, 37558989808526, 4073773336877345, 623476476706836148, 134732283882873635911, 41128995468748254231002, 17741753171749626840952685, 10817161765507572862559462656
Offset: 0

Views

Author

Keywords

Comments

Also number of distinct binary linear codes of length n and any dimension.
Equivalently, number of subgroups of the Abelian group (C_2)^n.
Let V_n be an n-dimensional vector space over a field with 2 elements. Let P(V_n) be the collection of all subspaces of V_n. Then a(n-1) is the number of times any given nonzero vector of V_n appears in P(V_n). - Geoffrey Critzer, Jun 05 2017
With V_n and P(V_n) as above, a(n) is also the cardinality of P(V_n). - Vaia Patta, Jun 25 2019

Examples

			O.g.f.: A(x) = 1/(1-x) + x/((1-x)*(1-2x)) + x^2/((1-x)*(1-2x)*(1-4x)) + x^3/((1-x)*(1-2x)*(1-4x)*(1-8x)) + ...
Also generated by iterated binomial transforms in the following way:
[1,2,5,16,67,374,2825,29212,...] = BINOMIAL([1,1,2,6,26,158,1330,...]); see A135922;
[1,2,6,26,158,1330,15414,245578,...] = BINOMIAL([1,1,3,13,83,749,...]);
[1,3,13,83,749,9363,160877,...] = BINOMIAL^2([1,1,5,33,317,4361,...]);
[1,5,33,317,4361,82789,2148561,...] = BINOMIAL^4([1,1,9,97,1433,...]);
[1,9,97,1433,30545,902601,...] = BINOMIAL^8([1,1,17,321,7601,252833,...]);
etc.
		

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. A006516. Row sums of A022166.
Cf. A005329, A083906. - Paul D. Hanna, Nov 29 2008

Programs

  • Magma
    I:=[1,2]; [n le 2 select I[n] else 2*Self(n-1)+(2^(n-2)-1)*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Aug 12 2014
  • Maple
    gf:= m-> add(x^n/mul(1-2^k*x, k=0..n), n=0..m):
    a:= n-> coeff(series(gf(n), x, n+1), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 24 2012
    # second Maple program:
    b:= proc(n, m) option remember; `if`(n=0, 1,
          2^m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 08 2021
  • Mathematica
    faq[n_, q_] = Product[(1-q^(1+k))/(1-q), {k, 0, n-1}]; qbin[n_, m_, q_] = faq[n, q]/(faq[m, q]*faq[n-m, q]); a[n_] := Sum[qbin[n, k, 2], {k, 0, n}]; a /@ Range[0, 19] (* Jean-François Alcover, Jul 21 2011 *)
    Flatten[{1, RecurrenceTable[{a[n]==2*a[n-1]+(2^(n-1)-1)*a[n-2], a[0]==1, a[1]==2}, a, {n,1,15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
    QP = QPochhammer; a[n_] := Sum[QP[2, 2, n]/(QP[2, 2, k]*QP[2, 2, n-k]), {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 23 2015 *)
    Table[Sum[QBinomial[n, k, 2], {k, 0, n}], {n, 0, 19}] (* Ivan Neretin, Mar 28 2016 *)
  • PARI
    a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-2^j*x+x*O(x^n))), n) \\ Paul D. Hanna, Dec 06 2007
    
  • PARI
    a(n,q=2)=sum(k=0,n,prod(i=1,n-k,(q^(i+k)-1)/(q^i-1))) \\ Paul D. Hanna, Nov 29 2008
    

Formula

O.g.f.: A(x) = Sum_{n>=0} x^n / Product_{k=0..n} (1 - 2^k*x). - Paul D. Hanna, Dec 06 2007
From Paul D. Hanna, Nov 29 2008: (Start)
Coefficients of the square of the q-exponential of x evaluated at q=2, where the q-exponential of x = Sum_{n>=0} x^n/F(n) and F(n) = Product{i=1..n} (q^i-1)/(q-1) is the q-factorial of n.
G.f.: (Sum_{k=0..n} x^n/F(n))^2 = Sum_{k=0..n} a(n)*x^n/F(n) where F(n) = A005329(n) = Product{i=1..n} (2^i - 1).
a(n) = Sum_{k=0..n} F(n)/(F(k)*F(n-k)) where F(n)=A005329(n) is the 2-factorial of n.
a(n) = Sum_{k=0..n} Product_{i=1..n-k} (2^(i+k) - 1)/(2^i - 1).
a(n) = Sum_{k=0..A033638(n)} A083906(n,k)*2^k. (End)
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-2^k*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
a(n) = 2*a(n-1) + (2^(n-1)-1)*a(n-2). [Hitzemann and Hochstattler]. - R. J. Mathar, Aug 21 2013
a(n) ~ c * 2^(n^2/4), where c = EllipticTheta[3,0,1/2] / QPochhammer[1/2,1/2] = 7.3719688014613... if n is even and c = EllipticTheta[2,0,1/2] / QPochhammer[1/2,1/2] = 7.3719494907662... if n is odd. - Vaclav Kotesovec, Aug 21 2013

A027871 a(n) = Product_{i=1..n} (3^i - 1).

Original entry on oeis.org

1, 2, 16, 416, 33280, 8053760, 5863137280, 12816818094080, 84078326697164800, 1654829626053597593600, 97714379759212830706892800, 17309711516825516108403231948800
Offset: 0

Views

Author

Keywords

Comments

2*(10)^m|a(n) where 4*m <= n <= 4*m+3 for m >= 1. - G. C. Greubel, Nov 20 2015
Given probability p = 1/3^n that an outcome will occur at the n-th stage of an infinite process, then starting at n=1, 1-a(n)/A047656(n+1) is the probability that the outcome has occurred at or before the n-th iteration. The limiting ratio is 1-A100220 ~ 0.4398739. - Bob Selcoe, Mar 01 2016

Crossrefs

Cf. A005329 (q=2), A027637 (q=4), A027872 (q=5), A027873 (q=6), A027875 (q=7), A027876 (q=8), A027877 (q=9), A027878 (q=10), A027879 (q=11), A027880 (q=12).

Programs

Formula

a(n) ~ c * 3^(n*(n+1)/2), where c = A100220 = Product_{k>=1} (1-1/3^k) = 0.560126077927948944969792243314140014379736333798... . - Vaclav Kotesovec, Nov 21 2015
a(n) = 3^(binomial(n+1,2))*(1/3;1/3){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 24 2015
a(n) = Product_{i=1..n} A024023(i). - Michel Marcus, Dec 27 2015
G.f.: Sum_{n>=0} 3^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 3^k*x). - Ilya Gutkovskiy, May 22 2017
From Amiram Eldar, Feb 19 2022: (Start)
Sum_{n>=0} 1/a(n) = A132324.
Sum_{n>=0} (-1)^n/a(n) = A100220. (End)
Showing 1-10 of 80 results. Next