A065021 Duplicate of A048652.
3, 2, 6, 4, 1, 2, 1, 9, 2, 1, 2, 3, 2, 3, 5, 1, 2, 1, 1, 6, 1, 2, 5, 79, 6, 4, 5, 1, 1, 1, 1, 12, 1, 1
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
(1/2)*(3/4)*(7/8)*(15/16)*... = 0.288788095086602421278899721929230780088911904840685784114741...
RealDigits[ Product[1 - 1/2^i, {i, 100}], 10, 111][[1]] (* Robert G. Wilson v, May 25 2011 *) RealDigits[QPochhammer[1/2], 10, 100][[1]] (* Jean-François Alcover, Nov 18 2015 *)
default(realprecision, 20080); x=prodinf(k=1, -1/2^k, 1); x*=10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b048651.txt", n, " ", d)); \\ Harry J. Smith, May 07 2009
G.f. = 1 + x + 3*x^2 + 21*x^3 + 315*x^4 + 9765*x^5 + 615195*x^6 + 78129765*x^7 + ...
List([0..15],n->Product([1..n],i->2^i-1)); # Muniru A Asiru, May 18 2018
[1] cat [&*[ 2^k-1: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Dec 24 2015
A005329 := proc(n) option remember; if n<=1 then 1 else (2^n-1)*procname(n-1); end if; end proc: seq(A005329(n), n=0..15);
a[0] = 1; a[n_] := a[n] = (2^n-1)*a[n-1]; a /@ Range[0,14] (* Jean-François Alcover, Apr 22 2011 *) FoldList[Times, 1, 2^Range[15] - 1] (* Harvey P. Dale, Dec 21 2011 *) Table[QFactorial[n, 2], {n, 0, 14}] (* Arkadiusz Wesolowski, Oct 30 2012 *) QFactorial[Range[0, 10], 2] (* Eric W. Weisstein, Jul 14 2017 *) a[ n_] := If[ n < 0, 0, (-1)^n QPochhammer[ 2, 2, n]]; (* Michael Somos, Jan 28 2018 *)
a(n)=polcoeff(sum(m=0,n,2^(m*(m+1)/2)*x^m/prod(k=0,m,1+2^k*x+x*O(x^n))),n) \\ Paul D. Hanna, Sep 17 2009
Dx(n,F)=local(D=F);for(i=1,n,D=deriv(D));D a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+sum(k=1,n,x^k/k!*Dx(k,x*A+x*O(x^n) ))); polcoeff(A,n) \\ Paul D. Hanna, Apr 21 2012
{a(n) = if( n<0, 0, prod(k=1, n, 2^k - 1))}; /* Michael Somos, Jan 28 2018 */
{a(n) = if( n<0, 0, (-1)^n * sum(k=0, n+1, (-1)^k * 2^(k*(k+1)/2) * prod(j=1, k, (2^(n+1-j) - 1) / (2^j - 1))))}; /* Michael Somos, Jan 28 2018 */
3.46274661945506361153795734292443116454075790290...
evalf(1+sum(2^(n*(n-1)/2)/product(2^k-1, k=1..n), n=1..infinity), 120); # Robert FERREOL, Feb 22 2020
N[ Product[ 1/(1 - 1/2^k), {k, 1, Infinity} ], 500 ] RealDigits[1/QPochhammer[1/2, 1/2], 10, 100][[1]] (* Vaclav Kotesovec, Jun 22 2014 *)
{ default(realprecision, 2080); x=prodinf(k=1, 1/(1 - 1/2^k)); for (n=1, 2000, d=floor(x); x=(x-d)*10; write("b065446.txt", n, " ", d)) } \\ Harry J. Smith, Oct 19 2009
prodinf(k=1, 1/(1-1/2^k)) \\ Michel Marcus, Feb 22 2020
Comments