cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335766 a(n) is the number of partitions of n into parts congruent to 1, 2, or 4 modulo 6 where only parts congruent to 1 modulo 6 may be repeated.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 18, 20, 24, 27, 31, 35, 41, 47, 54, 61, 70, 78, 90, 101, 116, 129, 146, 162, 182, 203, 228, 254, 284, 314, 351, 388, 433, 478, 531, 584, 646, 711, 785, 863, 952, 1044, 1149, 1258, 1384, 1513, 1660, 1812, 1983, 2163
Offset: 0

Views

Author

Jeremy Lovejoy, Jun 21 2020

Keywords

Examples

			a(8) = 6, the relevant partitions being [8], [7,1], [4,2,1,1], [4,1,1,1,1],[2,1,1,1,1,1,1], [1,1,1,1,1,1,1,1].
		

Crossrefs

Cf. A253144.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, i-1), j=0..min(n/i, [0, n, 1, 0, 1, 0][irem(i, 6)+1]))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jun 21 2020
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i j, i - 1], {j, 0, Min[n/i, {0, n, 1, 0, 1, 0}[[Mod[i, 6] + 1]]]}]]];
    a[n_] := b[n, n];
    a /@ Range[0, 60] (* Jean-François Alcover, Dec 01 2020, after Alois P. Heinz *)
    nmax = 60; CoefficientList[Series[Product[(1 + x^(6*k-2)) * (1 + x^(6*k-4)) / (1 - x^(6*k-5)), {k, 1, nmax/6}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 14 2021 *)

Formula

G.f.: Product_{k>=1} (1+q^(6*k-2))*(1+q^(6*k-4))/(1-q^(6*k-5)).
a(n) ~ Gamma(1/6) * exp(sqrt(2*n)*Pi/3) / (2^(23/12) * sqrt(3) * Pi^(5/6) * n^(7/12)). - Vaclav Kotesovec, Jan 14 2021