A335823 Triangle read by rows: A080779 with rows reversed.
1, 1, 1, 2, 3, 1, 6, 12, 6, 0, 24, 60, 40, 0, -4, 120, 360, 300, 0, -60, 0, 720, 2520, 2520, 0, -840, 0, 120, 5040, 20160, 23520, 0, -11760, 0, 3360, 0, 40320, 181440, 241920, 0, -169344, 0, 80640, 0, -12096, 362880, 1814400, 2721600, 0, -2540160, 0, 1814400, 0, -544320, 0
Offset: 1
Examples
Triangle begins: 1; 1, 1; 2, 3, 1; 6, 12, 6, 0; 24, 60, 40, 0, -4; ...
Crossrefs
Programs
-
Mathematica
Table[If[k == 0, (n - 1)!, n!*Product[n - j, {j, k - 1}]*(-1)^k*BernoulliB[k]/k!], {n, 10}, {k, 0, n - 1}] // Flatten (* Michael De Vlieger, Jun 27 2020 *)
-
PARI
T(n,k) = if (k==0, (n-1)!, n!*prod(j=1,k-1, n-j)*(-1)^k*bernfrac(k)/k!); tabl(nn) = for(n=1, nn, for (k=0, n-1, print1(T(n,k), ", ")); print); \\ Michel Marcus, Jun 25 2020
Formula
T(n,k) = n!*(n-1)*(n-2)*...*(n-k+1)*(-1)^k*Bk/k! where Bk is a Bernoulli number and T(n,0) = (n-1)! and T(n,m) = 0 if m >= n.