cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335884 The length of a longest path from n to a power of 2, when applying the nondeterministic maps k -> k - k/p and k -> k + k/p, where p can be any of the odd prime factors of k, and the maps can be applied in any order.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 2, 0, 2, 2, 3, 1, 3, 2, 3, 0, 3, 2, 3, 2, 3, 3, 4, 1, 4, 3, 3, 2, 4, 3, 4, 0, 4, 3, 4, 2, 4, 3, 4, 2, 4, 3, 4, 3, 4, 4, 5, 1, 4, 4, 4, 3, 4, 3, 5, 2, 4, 4, 5, 3, 5, 4, 4, 0, 5, 4, 5, 3, 5, 4, 5, 2, 5, 4, 5, 3, 5, 4, 5, 2, 4, 4, 5, 3, 5, 4, 5, 3, 5, 4, 5, 4, 5, 5, 5, 1, 5, 4, 5, 4, 5, 4, 5, 3, 5
Offset: 1

Views

Author

Antti Karttunen, Jun 29 2020

Keywords

Comments

The length of a longest path from n to a power of 2, when using the transitions x -> A171462(x) and x -> A335876(x).

Crossrefs

Cf. A335883 (position of the first occurrence of each n).

Programs

  • PARI
    A335884(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+max(A335884(f[k,1]-1),A335884(f[k,1]+1))))); };
    
  • PARI
    \\ Or empirically as:
    A171462(n) = if(1==n,0,(n-(n/vecmax(factor(n)[, 1]))));
    A335876(n) = if(1==n,2,(n+(n/vecmax(factor(n)[, 1]))));
    A209229(n) = (n && !bitand(n,n-1));
    A335884(n) = if(A209229(n),0,my(xs=Set([n]),newxs,a,b,u); for(k=1,oo, newxs=Set([]); if(!#xs, return(k-1)); for(i=1,#xs,u = xs[i]; a = A171462(u); if(!A209229(a), newxs = setunion([a],newxs)); b = A335876(u); if(!A209229(b), newxs = setunion([b],newxs))); xs = newxs));

Formula

Fully additive with a(2) = 0, and a(p) = 1+max(a(p-1), a(p+1)), for odd primes p.
For all n >= 1, A335904(n) >= a(n) >= A335881(n) >= A335875(n) >= A335885(n).
For all n >= 0, a(A335883(n)) = n.