A335897 Perimeters of primitive integer-sided triangles whose angles A < B < C are in arithmetic order.
18, 20, 35, 36, 45, 56, 77, 90, 84, 110, 104, 126, 120, 143, 135, 182, 176, 189, 170, 216, 210, 221, 198, 272, 209, 270, 264, 266, 260, 297, 252, 323, 273, 380, 299, 396, 351, 374, 368, 390, 378, 437, 350, 468, 425, 462, 360, 506, 494, 495, 432, 575, 476, 585, 464, 630
Offset: 1
Keywords
Examples
For b = 7 and c = 8, the two corresponding triangles satisfy: 7^2 = 3^2 - 3*8 + 8^2, with triple (3, 7, 8) and perimeter = 18, 7^2 = 5^2 - 5*8 + 8^2, with triple (5, 7, 8) and perimeter = 20. For b = 91, there exist four corresponding triangles, two for b = 91 and c = 96 and two for b = 91 and c = 99; the four corresponding perimeters are ordered 198, 272, 209, 270 in the data because: 91^2 = 11^2 -11*96 +96^2, with triple (11, 91, 96) and perimeter 11+91+96 = 198, 91^2 = 85^2 -85*96 +96^2, with triple (85, 91, 96) and perimeter 85+91+96 = 272, 91^2 = 19^2 -19*99 +99^2, with triple (19, 91, 99) and perimeter 19+91+99 = 209, 91^2 = 80^2 -80*99 +99^2, with triple (80, 91, 99) and perimeter 80+91+99 = 270.
References
- V. Lespinard & R. Pernet, Trigonométrie, Classe de Mathématiques élémentaires, programme 1962, problème B-298 p. 124, André Desvigne.
Crossrefs
Programs
-
Maple
for b from 3 to 250 by 2 do for c from b+1 to 6*b/5 do a := (c - sqrt(4*b^2-3*c^2))/2; if gcd(a,b)=1 and issqr(4*b^2-3*c^2) then print(a+b+c,2*c-a+b); end if; end do; end do;
-
PARI
lista(nn) = {forstep(b=1, nn, 2, for(c=b+1, 6*b\5, if (issquare(d=4*b^2 - 3*c^2), my(a = (c - sqrtint(d))/2); if ((denominator(a)==1) && (gcd(a, b) == 1), print1(a+b+c, ", ", 2*c-a+b, ", "); ); ); ); ); } \\ Michel Marcus, Jul 17 2020
Comments