A335893
Primitive triples for integer-sided triangles whose angles A < B < C are in arithmetic progression.
Original entry on oeis.org
3, 7, 8, 5, 7, 8, 7, 13, 15, 8, 13, 15, 5, 19, 21, 16, 19, 21, 11, 31, 35, 24, 31, 35, 7, 37, 40, 33, 37, 40, 13, 43, 48, 35, 43, 48, 16, 49, 55, 39, 49, 55, 9, 61, 65, 56, 61, 65, 32, 67, 77, 45, 67, 77, 17, 73, 80, 63, 73, 80, 40, 79, 91, 51, 79, 91, 11, 91, 96
Offset: 1
(3, 7, 8) is a triple for this sequence because from law of cosines (see link), cos(A) = (7^2 + 8^2 - 3^2)/(2*7*8) = 13/14, cos(B) = (8^2 + 3^2 - 7^2)/(2*8*3) = 1/2 and cos(C) = (3^2 + 7^2 - 8^2)/(2*3*7) = -1/7; then, (A+C)/2 = ( arccos(13/14) + arccos(-1/7) )/2 = Pi/3 = B.
Also, arccos(13/14) ~ 21.787 degrees, arccos(1/2) = 60 degrees, arccos(-1/7) ~ 98.213 degrees, so B-A = C-B ~ 38.213 degrees, hence (A, B, C) are in arithmetic progression.
5^2 - 5*8 + 8^2 = 7^2, hence (5, 7, 8) is another triple for triangle whose angles A < B < C are in arithmetic progression.
- V. Lespinard & R. Pernet, Trigonométrie, Classe de Mathématiques élémentaires, programme 1962, problème B-298 p. 124, André Desvigne.
Cf.
A103606 (primitive Pythagorean triples),
A335034 (primitive triples for triangles with two perpendicular medians).
-
for b from 3 to 250 by 2 do
for c from b+1 to 6*b/5 do
a := (c - sqrt(4*b^2-3*c^2))/2;
if gcd(a,b)=1 and issqr(4*b^2-3*c^2) then print(a,b,c,c-a,b,c); end if;
end do;
end do;
-
lista(nn) = {forstep(b=1, nn, 2, for(c=b+1, 6*b\5, if (issquare(d=4*b^2 - 3*c^2), my(a = (c - sqrtint(d))/2); if ((denominator(a)==1) && (gcd(a, b) == 1), print(a, ", ", b, ", ", c, ", "); print(c-a, ", ", b, ", ", c, ", ");););););} \\ Michel Marcus, Jul 15 2020
A335895
Middle side of primitive triples, in nondecreasing order, for integer-sided triangles whose angles A < B < C are in arithmetic progression.
Original entry on oeis.org
7, 7, 13, 13, 19, 19, 31, 31, 37, 37, 43, 43, 49, 49, 61, 61, 67, 67, 73, 73, 79, 79, 91, 91, 91, 91, 97, 97, 103, 103, 109, 109, 127, 127, 133, 133, 133, 133, 139, 139, 151, 151, 157, 157, 163, 163, 169, 169, 181, 181, 193, 193, 199, 199, 211, 211, 217, 217, 217, 217
Offset: 1
b = 7 appears twice because A121940(1) = 7 and:
7^2 = 3^2 - 3*8 + 8^2, with triple (3, 7, 8),
7^2 = 5^2 - 5*8 + 8^2, with triple (5, 7, 8).
b = 91 appears four times because A121940(2) = 91 and:
91^2 = 11^2 - 11*96 + 96^2, with triple (11, 91, 96),
91^2 = 85^2 - 85*96 + 96^2, with triple (85, 91, 96),
91^2 = 19^2 - 19*99 + 99^2, with triple (19, 91, 99),
91^2 = 80^2 - 80*99 + 99^2, with triple (80, 91, 99).
b = 1729 appears eight times because A121940(3) = 1729 and the triples of these 2^3 = 8 triangles are (96, 1729, 1775), (1679, 1729, 1775), (249, 1729, 1840), (1591, 1729, 1840), (656, 1729, 1961), (1305, 1729, 1961), (799, 1729, 1984), (1185, 1729, 1984).
-
for b from 3 to 100 by 2 do
for a from 1 to b-1 do
c := (a+ sqrt(4*b^2-3*a^2))/2;
if igcd(a, b) = 1 and issqr(4*b^2-3*a^2) then print(b); end if;
end do;
end do;
-
lista(nn) = {forstep(b=1, nn, 2, for(a=1, b-1, if (gcd(a, b) == 1, my(d = 4*b^2 - 3*a^2); if (issquare(d), my(c = (a + sqrtint(d))/2); if (denominator(c)==1, print1(b, ", "));););););} \\ Michel Marcus, Jul 05 2020
A335894
Smallest side of integer-sided primitive triangles whose angles A < B < C are in arithmetic order.
Original entry on oeis.org
3, 5, 7, 8, 5, 16, 11, 24, 7, 33, 13, 35, 16, 39, 9, 56, 32, 45, 17, 63, 40, 51, 11, 85, 19, 80, 55, 57, 40, 77, 24, 95, 13, 120, 23, 120, 65, 88, 69, 91, 56, 115, 25, 143, 75, 112, 15, 161, 104, 105, 32, 175
Offset: 1
For the pair b = 7, c = 8 the two corresponding values of a are 3 and 5 with 3 + 5 = 8 = c because:
7^2 = 3^2 - 3*8 + 8^2, with triple (3, 7, 8),
7^2 = 5^2 - 5*8 + 8^2, with triple (5, 7, 8).
For b = 91, there exist four corresponding values of a, two for b = 91 and c = 96 that are 11 and 85 with 11 + 85 = 96 = c, and two for b = 91 and c = 99 that are 19 and 80 with 19 + 80 = 99 = c; also these four smallest sides are ordered 11, 85, 19, 80 in the data because:
91^2 = 11^2 - 11*96 + 96^2, with triple (11, 91, 96),
91^2 = 85^2 - 85*96 + 96^2, with triple (85, 91, 96),
91^2 = 19^2 - 19*99 + 99^2, with triple (19, 91, 99),
91^2 = 80^2 - 80*99 + 99^2, with triple (80, 91, 99).
- V. Lespinard & R. Pernet, Trigonométrie, Classe de Mathématiques élémentaires, programme 1962, problème B-298 p. 124, André Desvigne.
-
for b from 3 to 250 by 2 do
for c from b+1 to 6*b/5 do
a := (c - sqrt(4*b^2-3*c^2))/2;
if gcd(a,b)=1 and issqr(4*b^2-3*c^2) then print(a,c-a); end if;
end do;
end do;
-
lista(nn) = {forstep(b=1, nn, 2, for(c=b+1, 6*b\5, if (issquare(d=4*b^2 - 3*c^2), my(a = (c - sqrtint(d))/2); if ((denominator(a)==1) && (gcd(a, b) == 1), print1(a, ", ", c-a, ", "); ); ); ); ); } \\ Michel Marcus, Jul 16 2020
A335896
Largest side of integer-sided primitive triangles whose angles A < B < C are in arithmetic order.
Original entry on oeis.org
8, 8, 15, 15, 21, 21, 35, 35, 40, 40, 48, 48, 55, 55, 65, 65, 77, 77, 80, 80, 91, 91, 96, 96, 99, 99, 112, 112, 117, 117, 119, 119, 133, 133, 143, 143, 153, 153, 160, 160, 171, 171, 168, 168, 187, 187, 176, 176, 209, 209, 207, 207, 221, 221, 224, 224, 225, 225
Offset: 1
c = 8 appears twice because:
7^2 = 3^2 - 3*8 + 8^2, with triple (3, 7, 8),
7^2 = 5^2 - 5*8 + 8^2, with triple (5, 7, 8).
c = 96 and c = 99 each appear twice associated with b = 91 because:
91^2 = 11^2 - 11*96 + 96^2, with triple (11, 91, 96),
91^2 = 85^2 - 85*96 + 96^2, with triple (85, 91, 96),
91^2 = 19^2 - 19*99 + 99^2, with triple (19, 91, 99),
91^2 = 80^2 - 80*99 + 99^2, with triple (80, 91, 99).
- V. Lespinard & R. Pernet, Trigonométrie, Classe de Mathématiques élémentaires, programme 1962, problème B-298 p. 124, André Desvigne.
Cf.
A089025 (terms in increasing order without repetition).
-
for b from 3 to 250 by 2 do
for c from b+1 to 6*b/5 do
a := (c - sqrt(4*b^2-3*c^2))/2;
if gcd(a,b)=1 and issqr(4*b^2-3*c^2) then print(c,c); end if;
end do;
end do;
-
lista(nn) = {forstep(b=1, nn, 2, for(c=b+1, 6*b\5, if (issquare(d=4*b^2 - 3*c^2), my(a = (c - sqrtint(d))/2); if ((denominator(a)==1) && (gcd(a, b) == 1), print(c, ", ", c, ", ");););););} \\ Michel Marcus, Jul 15 2020
A336754
Perimeters in increasing order of integer-sided triangles whose sides a < b < c are in arithmetic progression.
Original entry on oeis.org
9, 12, 15, 15, 18, 18, 21, 21, 21, 24, 24, 24, 27, 27, 27, 27, 30, 30, 30, 30, 33, 33, 33, 33, 33, 36, 36, 36, 36, 36, 39, 39, 39, 39, 39, 39, 42, 42, 42, 42, 42, 42, 45, 45, 45, 45, 45, 45, 45, 48, 48, 48, 48, 48, 48, 48, 51, 51, 51, 51, 51, 51, 51, 51
Offset: 1
Perimeter = 9 only for the smallest triangle (2, 3, 4).
Perimeter = 12 only for Pythagorean triple (3, 4, 5).
Perimeter = 15 for the two triples (3, 5, 7) and (4, 5, 6).
- V. Lespinard and R. Pernet, Trigonométrie, Classe de Mathématiques élémentaires, programme 1962, problème B-290 p. 121, André Desvigne.
Cf.
A335897 (perimeters when angles A, B and C are in arithmetic progression).
-
for b from 3 to 30 do
for a from b-floor((b-1)/2) to b-1 do
c := 2*b - a;
print(a+b+c);
end do;
end do;
-
A336754[n_] := 3*Ceiling[2*Sqrt[n+Round[Sqrt[n]]]]; Array[A336754, 100] (* or *)
Flatten[Array[ConstantArray[3*#, Floor[(#-1)/2]] &, 19, 3]] (* Paolo Xausa, Feb 29 2024 *)
A343067
Perimeter of integer-sided primitive triangles (a, b, c) whose angle B = 2*C.
Original entry on oeis.org
15, 28, 45, 66, 91, 120, 40, 153, 190, 231, 276, 84, 325, 378, 435, 496, 144, 77, 561, 630, 703, 104, 780, 220, 861, 946, 1035, 1128, 312, 1225, 170, 1326, 1431, 1540, 126, 420, 209, 1653, 1770, 1891, 2016, 544, 2145, 2278, 299, 2415, 2556, 198, 684, 2701, 350, 2850, 3003, 3160
Offset: 1
According to inequalities between a, b, c, there exist 3 types of such triangles:
a(1) = 15 with c < a < b for the first triple (5, 6, 4);
a(7) = 40 with c < b < a for the seventh triple (16, 15, 9);
a(8) = 153 with a < c < b for the eighth triple (17, 72, 64).
Cf.
A335897 (similar for A < B < C in arithmetic progression).
-
for a from 2 to 100 do
for c from 3 to floor(a^2/2) do
d := c*(a+c);
if issqr(d) and igcd(a, sqrt(d), c)=1 and abs(a-c)
-
lista(nn) = {for (a = 2, nn, for (c = 3, a^2\2, my(d = c*(a+c)); if (issquare(d) && (gcd([a, sqrtint(d), c])==1) && (abs(a-c)Michel Marcus, May 12 2022
A339860
Perimeter of primitive integer-sided triangles whose sides a < b < c form a geometric progression.
Original entry on oeis.org
19, 37, 61, 91, 109, 129, 127, 169, 193, 219, 247, 217, 273, 271, 301, 367, 403, 331, 399, 397, 433, 471, 511, 553, 597, 469, 637, 733, 547, 589, 633, 679, 727, 777, 829, 883, 631, 723, 823, 721, 769, 871, 1039, 1099, 817, 921, 1033, 1153, 1281, 919, 973, 1029, 1087
Offset: 1
a(1) = 19 = 4+6+9 for the smallest such triangle (4, 6, 9) with 4 * 9 = 6^2 and a ratio q = 3/2.
a(2) = 37 = 9+12+16 for the triple (9, 12, 16) with 9 * 16 = 12^2 and a ratio q = 4/3.
Cf.
A336754 (similar for sides in arithmetic progression).
Cf.
A335897 (similar for angles in arithmetic progression).
-
for a from 1 to 300 do
for b from a+1 to floor((1+sqrt(5))/2 *a) do
for c from b+1 to floor((1+sqrt(5))/2 *b) do k:=a*c;
if k=b^2 and igcd(a, b, c)=1 then print(a+b+c); end if;
end do;
end do;
end do;
-
lista(nn) = {my(phi = (1+sqrt(5))/2); for (a=1, nn, for (b=a+1, floor(a*phi), for (c=b+1, floor(b*phi), if ((a*c == b^2) && (gcd([a, b, c])==1), print1(a+b+c, ", ")); ); ); ); } \\ Michel Marcus, Jan 08 2021
Showing 1-7 of 7 results.
Comments