A335921 Total height of all binary search trees with n internal nodes.
0, 1, 4, 14, 50, 178, 644, 2347, 8624, 31908, 118768, 444308, 1669560, 6298280, 23842032, 90531032, 344702646, 1315726218, 5033357852, 19294463682, 74099098212, 285056401796, 1098314920968, 4237879802726, 16373796107092, 63341371265892, 245315823125496
Offset: 0
Keywords
Examples
a(3) = 14 = 3 + 3 + 2 + 3 + 3: . 3 3 2 1 1 / \ / \ / \ / \ / \ 2 o 1 o 1 3 o 3 o 2 / \ / \ ( ) ( ) / \ / \ 1 o o 2 o o o o 2 o o 3 / \ / \ / \ / \ o o o o o o o o .
Links
Programs
-
Maple
g:= n-> `if`(n=0, 0, ilog2(n)+1): b:= proc(n, h) option remember; `if`(n=0, 1, `if`(n<2^h, add(b(j-1, h-1)*b(n-j, h-1), j=1..n), 0)) end: T:= (n, k)-> b(n, k)-`if`(k>0, b(n, k-1), 0): a:= n-> add(T(n, k)*k, k=g(n)..n): seq(a(n), n=0..35);
-
Mathematica
g[n_] := If[n == 0, 0, Floor@Log2[n] + 1]; b[n_, h_] := b[n, h] = If[n == 0, 1, If[n < 2^h, Sum[b[j - 1, h - 1]*b[n - j, h - 1], {j, 1, n}], 0]]; T[n_, k_] := b[n, k] - If[k > 0, b[n, k - 1], 0]; a[n_] := Sum[T[n, k]*k, {k, g[n], n}]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Apr 26 2022, after Alois P. Heinz *)
Comments