A335922 Total number of internal nodes in all binary search trees of height n.
0, 1, 7, 97, 6031, 8760337, 8245932762607, 3508518207942911995940881, 311594265746788494170059418351454897488270152687
Offset: 0
Keywords
Examples
a(2) = 7 = 2 + 3 + 2: . 2 2 1 / \ / \ / \ 1 o 1 3 o 2 / \ ( ) ( ) / \ o o o o o o o o .
Links
Programs
-
Maple
b:= proc(n, h) option remember; `if`(n=0, 1, `if`(n<2^h, add(b(j-1, h-1)*b(n-j, h-1), j=1..n), 0)) end: T:= (n, k)-> b(n, k)-`if`(k>0, b(n, k-1), 0): a:= k-> add(T(n, k)*n, n=k..2^k-1): seq(a(n), n=0..10);
-
Mathematica
b[n_, h_] := b[n, h] = If[n == 0, 1, If[n < 2^h, Sum[b[j - 1, h - 1]*b[n - j, h - 1], {j, 1, n}], 0]]; T[n_, k_] := b[n, k] - If[k > 0, b[n, k - 1], 0]; a[k_] := Sum[T[n, k]*n, {n, k, 2^k - 1}]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Apr 26 2022, after Alois P. Heinz *)
Comments