cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335922 Total number of internal nodes in all binary search trees of height n.

Original entry on oeis.org

0, 1, 7, 97, 6031, 8760337, 8245932762607, 3508518207942911995940881, 311594265746788494170059418351454897488270152687
Offset: 0

Views

Author

Alois P. Heinz, Jun 29 2020

Keywords

Comments

Empty external nodes are counted in determining the height of a search tree.

Examples

			a(2) = 7 = 2 + 3 + 2:
.
         2        2        1
        / \      / \      / \
       1   o    1   3    o   2
      / \      ( ) ( )      / \
     o   o     o o o o     o   o
.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, h) option remember; `if`(n=0, 1, `if`(n<2^h,
          add(b(j-1, h-1)*b(n-j, h-1), j=1..n), 0))
        end:
    T:= (n, k)-> b(n, k)-`if`(k>0, b(n, k-1), 0):
    a:= k-> add(T(n, k)*n, n=k..2^k-1):
    seq(a(n), n=0..10);
  • Mathematica
    b[n_, h_] := b[n, h] = If[n == 0, 1, If[n < 2^h,
         Sum[b[j - 1, h - 1]*b[n - j, h - 1], {j, 1, n}], 0]];
    T[n_, k_] := b[n, k] - If[k > 0, b[n, k - 1], 0];
    a[k_] := Sum[T[n, k]*n, {n, k, 2^k - 1}];
    Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Apr 26 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=n..2^n-1} k * A335919(k,n) = Sum_{k=n..2^n-1} k * A335920(k,n).