cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A361213 E.g.f. satisfies A(x) = exp( 2*x*A(x) / (1+x) ).

Original entry on oeis.org

1, 2, 8, 68, 848, 14192, 298048, 7546016, 223792640, 7612381952, 292216807424, 12497875215872, 589392367925248, 30386736933804032, 1700376343771136000, 102641314849948602368, 6648428846464054919168, 459977466799800897437696
Offset: 0

Views

Author

Seiichi Manyama, Mar 04 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^n*n!*sum(k=0, n, (-2)^k*(k+1)^(k-1)*binomial(n-1, n-k)/k!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x/(1+x)))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(-(1+x)/(2*x)*lambertw(-2*x/(1+x))))

Formula

a(n) = (-1)^n * n! * Sum_{k=0..n} (-2)^k * (k+1)^(k-1) * binomial(n-1,n-k)/k!.
E.g.f.: exp ( -LambertW(-2*x/(1+x)) ).
E.g.f.: -(1+x)/(2*x) * LambertW(-2*x/(1+x)).
a(n) ~ (2*exp(1) - 1)^(n + 1/2) * n^(n-1) / (sqrt(2) * exp(n - 1/2)). - Vaclav Kotesovec, Nov 10 2023

A361214 E.g.f. satisfies A(x) = exp( 3*x*A(x) / (1+x) ).

Original entry on oeis.org

1, 3, 21, 288, 5841, 158148, 5370003, 219641922, 10518990129, 577629889848, 35788733371179, 2470154920005798, 187970878034549001, 15636177199793409444, 1411635193678825868979, 137469669176542404342042, 14364540773583252035937633
Offset: 0

Views

Author

Seiichi Manyama, Mar 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(-1)^n*n!*Sum[(-3)^k*(k + 1)^(k - 1)*Binomial[n - 1, n - k]/k!, {k, 0, n}], {n, 0, 20}] (* Wesley Ivan Hurt, May 25 2024 *)
  • PARI
    a(n) = (-1)^n*n!*sum(k=0, n, (-3)^k*(k+1)^(k-1)*binomial(n-1, n-k)/k!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-3*x/(1+x)))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(-(1+x)/(3*x)*lambertw(-3*x/(1+x))))

Formula

a(n) = (-1)^n * n! * Sum_{k=0..n} (-3)^k * (k+1)^(k-1) * binomial(n-1,n-k)/k!.
E.g.f.: exp ( -LambertW(-3*x/(1+x)) ).
E.g.f.: -(1+x)/(3*x) * LambertW(-3*x/(1+x)).
Showing 1-2 of 2 results.