A335948 T(n, k) = denominator([x^k] b_n(x)), where b_n(x) = Sum_{k=0..n} binomial(n,k)* Bernoulli(k, 1/2)*x^(n-k). Triangle read by rows, for n >= 0 and 0 <= k <= n.
1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 240, 1, 2, 1, 1, 1, 48, 1, 6, 1, 1, 1344, 1, 16, 1, 4, 1, 1, 1, 192, 1, 48, 1, 4, 1, 1, 3840, 1, 48, 1, 24, 1, 3, 1, 1, 1, 1280, 1, 16, 1, 40, 1, 1, 1, 1, 33792, 1, 256, 1, 32, 1, 8, 1, 4, 1, 1, 1, 3072, 1, 256, 1, 32, 1, 8, 1, 12, 1, 1
Offset: 0
Examples
First few polynomials are: b_0(x) = 1; b_1(x) = x; b_2(x) = -(1/12) + x^2; b_3(x) = -(1/4)*x + x^3; b_4(x) = (7/240) - (1/2)*x^2 + x^4; b_5(x) = (7/48)*x - (5/6)*x^3 + x^5; b_6(x) = -(31/1344) + (7/16)*x^2 - (5/4)*x^4 + x^6; Triangle starts: 1; 1, 1; 12, 1, 1; 1, 4, 1, 1; 240, 1, 2, 1, 1; 1, 48, 1, 6, 1, 1; 1344, 1, 16, 1, 4, 1, 1; 1, 192, 1, 48, 1, 4, 1, 1; 3840, 1, 48, 1, 24, 1, 3, 1, 1; 1, 1280, 1, 16, 1, 40, 1, 1, 1, 1; 33792, 1, 256, 1, 32, 1, 8, 1, 4, 1, 1;
Comments