A335964
Triangle read by rows, T(n,k) = T(n-1,k) + T(n-3,k-1) + T(n-4,k-2) + delta(n,0)*delta(k,0), T(n,k<0) = T(n
1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 2, 0, 0, 0, 1, 4, 4, 0, 0, 0, 0, 1, 5, 7, 2, 0, 0, 0, 0, 1, 6, 11, 6, 1, 0, 0, 0, 0, 1, 7, 16, 13, 3, 0, 0, 0, 0, 0, 1, 8, 22, 24, 9, 0, 0, 0, 0, 0, 0, 1, 9, 29, 40, 22, 3, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle begins: 1; 1, 0; 1, 0, 0; 1, 1, 0, 0; 1, 2, 1, 0, 0; 1, 3, 2, 0, 0, 0; 1, 4, 4, 0, 0, 0, 0; 1, 5, 7, 2, 0, 0, 0, 0; 1, 6, 11, 6, 1, 0, 0, 0, 0; 1, 7, 16, 13, 3, 0, 0, 0, 0, 0; 1, 8, 22, 24, 9, 0, 0, 0, 0, 0, 0; 1, 9, 29, 40, 22, 3, 0, 0, 0, 0, 0, 0; ...
Links
- Kenneth Edwards and Michael A. Allen, New Combinatorial Interpretations of the Fibonacci Numbers Squared, Golden Rectangle Numbers, and Jacobsthal Numbers Using Two Types of Tile, arXiv:2009.04649 [math.CO], 2020.
- Kenneth Edwards and Michael A. Allen, New combinatorial interpretations of the Fibonacci numbers squared, golden rectangle numbers, and Jacobsthal numbers using two types of tile, J. Int. Seq. 24 (2021) Article 21.3.8.
- John Konvalina, On the number of combinations without unit separation., Journal of Combinatorial Theory, Series A 31.2 (1981): 101-107. See Table I.
Crossrefs
Programs
-
Mathematica
T[n_,k_]:=If[n
-
PARI
TT(n,k) = if (n
A059259 T(n,k) = TT(n-k,k); \\ matrix(7,7,n,k, T(n-1,k-1)) \\ Michel Marcus, Jul 18 2020
Formula
T(n,k) = A059259(n-k,k).
From Michael A. Allen, Oct 02 2021: (Start)
G.f.: 1/((1 + x^2*y)(1 - x - x^2*y)) in the sense that T(n,k) is the coefficient of x^n*y^k in the expansion of the g.f.
T(n,0) = 1.
T(n,1) = n-2 for n>1.
T(n,2) = binomial(n-4,2) + n - 3 for n>3.
T(n,3) = binomial(n-6,3) + 2*binomial(n-5,2) for n>5.
T(4*m-3,2*m-2) = T(4*m-1,2*m-1) = m for m>0.
T(2*n+1,n-k) = A158909(n,k). (End)
T(n,k) = A348445(n-2,k) for n>1.
Comments