cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335964 Triangle read by rows, T(n,k) = T(n-1,k) + T(n-3,k-1) + T(n-4,k-2) + delta(n,0)*delta(k,0), T(n,k<0) = T(n

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 2, 0, 0, 0, 1, 4, 4, 0, 0, 0, 0, 1, 5, 7, 2, 0, 0, 0, 0, 1, 6, 11, 6, 1, 0, 0, 0, 0, 1, 7, 16, 13, 3, 0, 0, 0, 0, 0, 1, 8, 22, 24, 9, 0, 0, 0, 0, 0, 0, 1, 9, 29, 40, 22, 3, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael A. Allen, Jul 01 2020

Keywords

Comments

T(n,k) is the number of tilings of an n-board (a board with dimensions n X 1) using k (1,1)-fence tiles and n-2k square tiles. A (w,g)-fence tile is composed of two tiles of width w separated by a gap of width g.
Sum of n-th row = A006498(n).
T(2*j+r,k) is the coefficient of x^k in (f(j,x))^(2-r)*(f(j+1,x))^r for r=0,1 where f(n,x) is one form of a Fibonacci polynomial defined by f(n+1,x) = f(n,x) + x*f(n-1,x) where f(0,x)=1 and f(n<0,x)=0. - Michael A. Allen, Oct 02 2021

Examples

			Triangle begins:
  1;
  1,  0;
  1,  0,  0;
  1,  1,  0,  0;
  1,  2,  1,  0,  0;
  1,  3,  2,  0,  0,  0;
  1,  4,  4,  0,  0,  0,  0;
  1,  5,  7,  2,  0,  0,  0,  0;
  1,  6, 11,  6,  1,  0,  0,  0,  0;
  1,  7, 16, 13,  3,  0,  0,  0,  0,  0;
  1,  8, 22, 24,  9,  0,  0,  0,  0,  0,  0;
  1,  9, 29, 40, 22,  3,  0,  0,  0,  0,  0,  0;
  ...
		

Crossrefs

Other triangles related to tiling using fences: A059259, A123521, A157897, A158909.
Cf. A006498 (row sums), A011973, A348445.

Programs

  • Mathematica
    T[n_,k_]:=If[n
    				
  • PARI
    TT(n,k) = if (nA059259
    T(n,k) = TT(n-k,k);
    \\ matrix(7,7,n,k, T(n-1,k-1)) \\ Michel Marcus, Jul 18 2020

Formula

T(n,k) = A059259(n-k,k).
From Michael A. Allen, Oct 02 2021: (Start)
G.f.: 1/((1 + x^2*y)(1 - x - x^2*y)) in the sense that T(n,k) is the coefficient of x^n*y^k in the expansion of the g.f.
T(n,0) = 1.
T(n,1) = n-2 for n>1.
T(n,2) = binomial(n-4,2) + n - 3 for n>3.
T(n,3) = binomial(n-6,3) + 2*binomial(n-5,2) for n>5.
T(4*m-3,2*m-2) = T(4*m-1,2*m-1) = m for m>0.
T(2*n+1,n-k) = A158909(n,k). (End)
T(n,k) = A348445(n-2,k) for n>1.