A335966 a(n) is the number of odd terms in the n-th row of triangle A056939.
1, 2, 2, 2, 2, 6, 2, 2, 2, 4, 4, 4, 4, 14, 2, 2, 2, 4, 4, 4, 4, 12, 4, 4, 4, 8, 8, 8, 8, 30, 2, 2, 2, 4, 4, 4, 4, 12, 4, 4, 4, 8, 8, 8, 8, 28, 4, 4, 4, 8, 8, 8, 8, 24, 8, 8, 8, 16, 16, 16, 16, 62, 2, 2, 2, 4, 4, 4, 4, 12, 4, 4, 4, 8, 8, 8, 8, 28, 4, 4, 4, 8, 8, 8, 8, 24
Offset: 0
Keywords
Examples
a(4)=2 as there are two odd numbers among 1,10,10,1.
Links
- Stefan Felsner, Eric Fusy, Marc Noy, and David Orden, Bijections for Baxter families and related objects, J. Combin. Theory Ser. A, 118(3):993-1020, 2011.
Crossrefs
Cf. A056939.
Programs
-
Mathematica
a[n_] := Count[Table[2 * Binomial[n, k] * Binomial[n + 1, k + 1] * Binomial[n + 2, k + 2]/((n - k + 1)^2 * (n - k + 2)), {k, 0, n}], ?OddQ]; Array[a, 100, 0] (* _Amiram Eldar, Jul 02 2020 *)
-
PARI
T(n,m) = 2*binomial(n, m)*binomial(n + 1, m + 1)*binomial(n + 2, m + 2)/(( n - m + 1)^2*(n - m + 2)); \\ A056939 a(n) = sum(m=0, n, T(n,m) % 2); \\ Michel Marcus, Jul 02 2020
Formula
a(n) is even if n>=1.
a(n) = n iff n is of the form 2^k-2.
a(2^k-3) = 2^k-2.
Comments