A335980
Expansion of e.g.f. exp(2 * (1 - exp(-x)) + x).
Original entry on oeis.org
1, 3, 7, 11, 7, -5, 23, 75, -281, -101, 4663, -14229, -41721, 532667, -1464489, -8840053, 103689511, -313202725, -2348557705, 32041266859, -127039882425, -762423051013, 14393151011735, -81523161874741, -236027974047897, 8564406463119387
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[2 (1 - Exp[-x]) + x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = a[n - 1] + 2 Sum[(-1)^(n - k - 1) Binomial[n - 1, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 25}]
-
my(N=33, x='x+O('x^N)); Vec(serlaplace(exp(2 * (1 - exp(-x)) + x))) \\ Joerg Arndt, Jul 04 2020
A335981
Expansion of e.g.f. exp(3 * (1 - exp(-x)) + x).
Original entry on oeis.org
1, 4, 13, 31, 40, -23, -95, 490, 823, -8393, 3766, 174775, -658787, -2751404, 34033297, -55552037, -1170734432, 9362348365, 3277050925, -562286419646, 3848880970147, 8815342530739, -356804325202730, 2389771436686339, 8677476137729929, -302470260552857660
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[3 (1 - Exp[-x]) + x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = a[n - 1] + 3 Sum[(-1)^(n - k - 1) Binomial[n - 1, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 25}]
A320433
Expansion of e.g.f. exp(4 * (1 - exp(x)) + x).
Original entry on oeis.org
1, -3, 5, 5, -43, -27, 597, 805, -11883, -40475, 265685, 2133157, -3405803, -107760283, -301542315, 4458255397, 42421260949, -45046794011, -3365690666283, -19844416105563, 138274174035221, 2917746747446373, 11092963732101461, -207438902364296411, -3205301465165742187
Offset: 0
-
m = 24; Range[0, m]! * CoefficientList[Series[Exp[4 * (1 - Exp[x]) + x], {x, 0, m}], x] (* Amiram Eldar, Jul 06 2020 *)
Table[Sum[Binomial[n, k] * BellB[k, -4], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 06 2020 *)
-
N=40; x='x+O('x^N); Vec(serlaplace(exp(4*(1-exp(x))+x)))
Showing 1-3 of 3 results.