cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336018 a(n) = floor(frac(log_2(n))*n), where frac denotes the fractional part.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 5, 0, 1, 3, 5, 7, 9, 11, 13, 0, 1, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 29, 0, 1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 52, 54, 56, 59, 61, 0, 1, 2, 4, 5, 7, 9, 10, 12, 13
Offset: 1

Views

Author

Andres Cicuttin, Jul 04 2020

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> floor(n*log[2](n))-n*ilog2(n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Jan 04 2021
  • Mathematica
    a[n_]:=Floor[FractionalPart[Log[2, n]]*n];
    Table[a[n], {n, 1, 100}]
  • PARI
    a(n) = floor(n*frac(log(n)/log(2))); \\ Michel Marcus, Jul 07 2020
    
  • Python
    def A336018(n):
        return len(bin(n**n//(2**((len(bin(n))-3)*n))))-3 # Chai Wah Wu, Jul 09 2020

Formula

a(n) = floor((log_2(n) - floor(log_2(n)))*n).
From Alois P. Heinz, Jan 04 2021: (Start)
a(n) = A326299(n) - A340301(n).
a(n) = 0 <=> n in { A000079 }. (End)