cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A369321 T(n,k) is the number of length-n weak ascent sequences (prefixed with a zero) with k weak ascents, triangle read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 5, 0, 0, 0, 9, 14, 0, 0, 0, 5, 59, 42, 0, 0, 0, 1, 92, 342, 132, 0, 0, 0, 0, 75, 1073, 1863, 429, 0, 0, 0, 0, 35, 1882, 10145, 9794, 1430, 0, 0, 0, 0, 9, 2131, 31345, 84977, 50380, 4862, 0, 0, 0, 0, 1, 1661, 64395, 417220, 658423, 255606, 16796
Offset: 0

Views

Author

Joerg Arndt, Jan 20 2024

Keywords

Comments

A weak ascent sequence is a sequence [d(1), d(2), ..., d(n)] where d(1)=0, d(k)>=0, and d(k) <= 1 + asc([d(1), d(2), ..., d(k-1)]) and asc(.) counts the weak ascents d(j) >= d(j-1) of its argument.

Examples

			1,
0, 1,
0, 0, 2,
0, 0, 1, 5,
0, 0, 0, 9, 14,
0, 0, 0, 5, 59,   42,
0, 0, 0, 1, 92,  342,    132,
0, 0, 0, 0, 75, 1073,   1863,     429,
0, 0, 0, 0, 35, 1882,  10145,    9794,     1430,
0, 0, 0, 0,  9, 2131,  31345,   84977,    50380,     4862,
0, 0, 0, 0,  1, 1661,  64395,  417220,   658423,   255606,    16796,
0, 0, 0, 0,  0,  912,  95477, 1370141,  4818426,  4835924,  1285453,   58786,
0, 0, 0, 0,  0,  350, 107002, 3291589, 23507705, 50477693, 34184279, 6428798, 208012,
...
		

Crossrefs

Cf. A000108 (main diagonal), A336070 (row sums), A369322 (column sums).
T(2n,n) gives A373115.
Cf. A137251.

Programs

  • Maple
    b:= proc(n, i, t) option remember; expand(`if`(n=0, 1, add(
          b(n-1, j, t+`if`(j>=i, 1, 0))*`if`(j>=i, x, 1), j=0..t+1)))
        end:
    T:= (n, k)-> coeff(b(n, -1$2), x, k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Jan 23 2024
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = Expand[If[n == 0, 1, Sum[
       b[n - 1, j, t + If[j >= i, 1, 0]]*If[j >= i, x, 1], {j, 0, t + 1}]]];
    T[n_, k_] := Coefficient[b[n, -1, -1], x, k];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, May 24 2024, after Alois P. Heinz *)
  • PARI
    \\ see formula (5) on page 18 of the Benyi/Claesson/Dukes reference
    N=40;
    M=matrix(N, N, r, c, -1);  \\ memoization
    a(n, k)=
    {
        if ( n==0 && k==0, return(1) );
        if ( k==0, return(0) );
        if ( n==0, return(0) );
        if ( M[n, k] != -1 , return( M[n, k] ) );
        my( s );
        s = sum( i=0, n, sum( j=0, k-1,
             (-1)^j * binomial(k-j, i) * binomial(i, j) * a( n-i, k-j-1 )) );
        M[n, k] = s;
        return( s );
    }
    \\ for (n=0, N, print1( sum(k=1, n, a(n, k)), ", "); ); \\ A336070
    for (n=0, N, for(k=0, n, print1(a(n, k), ", "); ); print(); );
    \\ Joerg Arndt, Jan 20 2024

Formula

T(n,n) = A000108(n) (number of length-n weak ascent sequences with maximal number of weak ascents).

A336071 Number of inversion sequences avoiding the vincular pattern 1-01 (or 1-10).

Original entry on oeis.org

1, 2, 6, 23, 107, 584, 3655, 25790, 202495, 1750763
Offset: 1

Views

Author

Michael De Vlieger, Jul 07 2020

Keywords

Crossrefs

A336072 Number of inversion sequences avoiding the vincular pattern 2-01 (or 2-10).

Original entry on oeis.org

1, 2, 6, 24, 118, 680, 4460, 32634, 262536, 2296532
Offset: 1

Views

Author

Michael De Vlieger, Jul 07 2020

Keywords

Crossrefs

A369322 a(n) is the number of weak ascent sequences (of any length) with n weak ascents.

Original entry on oeis.org

1, 1, 3, 20, 285, 8498, 521549, 65149296, 16446593964, 8354292354562, 8517018874559019, 17400156347544892896, 71175200852044807325678, 582639858848549658827324726, 9542182685892187892079287210803, 312611431819035281373960038697247872
Offset: 0

Views

Author

Joerg Arndt, Jan 20 2024

Keywords

Comments

Column sums of A369321.
A weak ascent sequence is a sequence [d(1), d(2), ..., d(n)] where d(1)=0, d(k)>=0, and d(k) <= 1 + asc([d(1), d(2), ..., d(k-1)]) and asc(.) counts the weak ascents d(j) >= d(j-1) of its argument.

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, k) option remember;
         `if`(k<0, 0,  `if`(n=0, `if`(k=0, 1, 0), add((d->
            b(n-1, j, t+d, k-d))(`if`(j>=i, 1, 0)), j=0..t+1)))
        end:
    a:= n-> add(b(j, -1$2, n), j=n..n*(n+1)/2):
    seq(a(n), n=0..15);  # Alois P. Heinz, Jan 25 2024
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[k < 0, 0, If[n == 0, If[k == 0, 1, 0], Sum[Function[d, b[n-1, j, t+d, k-d]][If[j >= i, 1, 0]], {j, 0, t+1}]]];
    a[n_] := Sum[b[j, -1, -1, n], {j, n, n*(n+1)/2}];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 07 2025, after Alois P. Heinz *)

A369476 Total number of weak ascents in all length-n weak ascent sequences.

Original entry on oeis.org

0, 1, 4, 17, 83, 461, 2873, 19846, 150418, 1240398, 11051017, 105740309, 1081101474, 11758967146, 135544030566, 1650178088102, 21155166649234, 284821038726404, 4017445572746953, 59238368957321225, 911319667593472401, 14600491369553323529, 243205500769215401307
Offset: 0

Views

Author

Alois P. Heinz, Jan 23 2024

Keywords

Comments

See A369321 for definitions.

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1,
          add(b(n-1, j, t+`if`(j>=i, 1, 0)), j=0..t+1))
        end:
    a:= n-> b(n+1, -1$2)-b(n, -1$2):
    seq(a(n), n=0..23);

Formula

a(n) = Sum_{k=0..n} k * A369321(n,k).
a(n) = A336070(n+1) - A336070(n).
Showing 1-5 of 5 results.