cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A345751 E.g.f.: Product_{k>=1} (1 - (exp(x) - 1)^k)^(1/k).

Original entry on oeis.org

1, -1, -2, -3, -3, 40, 477, 4375, 45154, 486817, 5002397, 54970652, 732601449, 10046371231, 113632306694, 1051655108629, 12585372336141, 202763995934160, -863641466773595, -247388278229558697, -10810815349601723990, -311011007642247422759
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2021

Keywords

Comments

Stirling transform of A028343.

Crossrefs

Programs

  • Mathematica
    max = 21; Range[0, max]! * CoefficientList[Series[Product[(1 - (Exp[x] - 1)^k)^(1/k), {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Jun 26 2021 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1-(exp(x)-1)^k)^(1/k))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(-sum(k=1, N, numdiv(k)*(exp(x)-1)^k/k))))

Formula

E.g.f.: exp( -Sum_{k>=1} d(k) * (exp(x) - 1)^k / k ), where d(n) is the number of divisors of n.
a(n) = Sum_{k=0..n} Stirling2(n,k) * A028343(k).

A336097 E.g.f.: Product_{k>=1} (1 - (1 - exp(x))^k).

Original entry on oeis.org

1, 1, -1, -5, -13, -149, -1861, -21965, -267373, -3163109, -34739221, -352104125, -3806609533, -67068890069, -1866226978981, -51776974365485, -1180415240484493, -19613026052409029, -122604194898649141, 6950364605049945955, 394565422299921179747, 13840685990526765512011
Offset: 0

Views

Author

Seiichi Manyama, Jul 08 2020

Keywords

Crossrefs

Programs

  • Mathematica
    m = 21; Range[0, m]! * CoefficientList[Series[Product[1 - (1 - Exp[x])^k, {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, Jul 08 2020 *)
    A010815[k_] := (m = (1 + Sqrt[1 + 24*k])/6; If[IntegerQ[m], (-1)^m, 0] + If[IntegerQ[m - 1/3], (-1)^(m - 1/3), 0]); Table[Sum[(-1)^k * StirlingS2[n, k] * k! * A010815[k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 09 2020 *)
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, 1-(1-exp(x))^k)))

Formula

a(n) = Sum_{k=0..n} (-1)^k * Stirling2(n,k) * k! * A010815(k).
Showing 1-2 of 2 results.