A336103 Number of separable multisets of size n covering an initial interval of positive integers.
1, 1, 1, 3, 5, 13, 24, 56, 108, 236, 464, 976, 1936, 3984, 7936, 16128, 32192, 64960, 129792, 260864, 521472, 1045760, 2091008, 4188160, 8375296, 16763904, 33525760, 67080192, 134156288, 268374016, 536739840, 1073610752, 2147205120, 4294688768, 8589344768, 17179279360, 34358493184
Offset: 0
Examples
The a(1) = 1 through a(5) = 13 separable multisets: {1} {1,2} {1,1,2} {1,1,2,2} {1,1,1,2,2} {1,2,2} {1,1,2,3} {1,1,1,2,3} {1,2,3} {1,2,2,3} {1,1,2,2,2} {1,2,3,3} {1,1,2,2,3} {1,2,3,4} {1,1,2,3,3} {1,1,2,3,4} {1,2,2,2,3} {1,2,2,3,3} {1,2,2,3,4} {1,2,3,3,3} {1,2,3,3,4} {1,2,3,4,4} {1,2,3,4,5}
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..3322
- Index entries for linear recurrences with constant coefficients, signature (2,4,-8,-4,8).
Crossrefs
The inseparable version is A336102.
The strong (weakly decreasing multiplicities) case is A336106.
Sequences covering an initial interval are A000670.
Anti-run compositions are A003242.
Anti-run patterns are A005649.
Separable partitions are A325534.
Inseparable partitions are A325535.
Inseparable factorizations are A333487.
Anti-run compositions are ranked by A333489.
Heinz numbers of inseparable partitions are A335448.
Programs
-
Mathematica
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; sepQ[m_]:=Select[Permutations[m],!MatchQ[#,{_,x_,x_,_}]&]!={}; Table[Length[Select[allnorm[n],sepQ]],{n,0,5}] (* or *) Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],With[{mx=Max@@#},mx<=1+Total[DeleteCases[#,mx,{1},1]]]&]],{n,0,15}] (* or *) CoefficientList[Series[(x - 1) (2 x^5 + 7 x^4 - 5 x^2 + 1)/((2 x - 1) (2 x^2 - 1)^2), {x, 0, 36}], x] (* Michael De Vlieger, Apr 07 2021 *)
Formula
a(n) = 2^(n-1) - (floor(n/2)+1) * 2^(floor(n/2)-2) for n >= 2. - David A. Corneth, Jul 09 2020
From Chai Wah Wu, Apr 07 2021: (Start)
a(n) = 2*a(n-1) + 4*a(n-2) - 8*a(n-3) - 4*a(n-4) + 8*a(n-5) for n > 6.
G.f.: (x - 1)*(2*x^5 + 7*x^4 - 5*x^2 + 1)/((2*x - 1)*(2*x^2 - 1)^2). (End)
Extensions
a(26)-a(36) from David A. Corneth, Jul 09 2020
Comments