A336111 A non-symmetrical rectangular array read by antidiagonals: A(n,m) is the tower of powers of n modulo m.
0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 3, 1, 1, 0, 1, 4, 2, 0, 2, 0, 0, 1, 2, 3, 1, 1, 0, 1, 0, 1, 0, 6, 4, 0, 0, 1, 0, 0, 1, 7, 3, 4, 5, 1, 3, 1, 1, 0, 1, 6, 0, 0, 3, 0, 3, 0, 0, 0, 0, 1, 9, 7, 4, 5, 1, 1, 1, 1, 1, 1, 0, 1, 4, 9, 6, 2, 0, 0, 4, 4, 0, 2, 0, 0
Offset: 1
Examples
\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... n\ _1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 _2 0 0 1 0 1 4 2 0 7 6 9 4 3 2 1 0 _3 0 1 0 3 2 3 6 3 0 7 9 3 1 13 12 11 _4 0 0 1 0 1 4 4 0 4 6 4 4 9 4 1 0 _5 0 1 2 1 0 5 3 5 2 5 1 5 5 3 5 5 _6 0 0 0 0 1 0 1 0 0 6 5 0 1 8 6 0 _7 0 1 1 3 3 1 0 7 7 3 2 7 6 7 13 7 _8 0 0 1 0 1 4 1 0 1 6 3 4 1 8 1 0 _9 0 1 0 1 4 3 1 1 0 9 5 9 1 1 9 9 10 0 0 1 0 0 4 4 0 1 0 1 4 3 4 10 0 etc, .
References
- Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.
Links
- Robert G. Wilson v, Mathematica coding for "SuperPowerMod" from Vardi
Programs
-
Mathematica
(* first load all lines of Super Power Mod by Ilan Vardi from the hyper-link *) Table[ SuperPowerMod[n - m + 1, 2^100, m], {n, 14}, {m, n, 1, -1}] // Flatten (* or *) a[b_, 1] = 0; a[b_, n_] := PowerMod[b, If[OddQ@ b, a[b, EulerPhi[n]], EulerPhi[n] + a[b, EulerPhi[n]]], n]; Table[a[b - m + 1, m], {b, 14}, {m, b, 1, -1}] // Flatten
Comments