cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336140 Number of ways to choose a set partition of the parts of a strict integer composition of n.

Original entry on oeis.org

1, 1, 1, 5, 5, 9, 39, 43, 73, 107, 497, 531, 951, 1345, 2125, 8789, 9929, 16953, 24723, 38347, 52717, 219131, 240461, 419715, 600075, 938689, 1278409, 1928453, 6853853, 7815657, 13205247, 19051291, 29325121, 40353995, 60084905, 80722899, 277280079, 312239953
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.

Crossrefs

Set partitions are A000110.
Strict compositions are A032020.
Set partitions of binary indices are A050315.
Set partitions of strict partitions are A294617.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n$2, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 30 2020
  • Mathematica
    Table[Sum[BellB[Length[ctn]],{ctn,Join@@Permutations/@Select[ IntegerPartitions[n],UnsameQ@@#&]}],{n,0,10}]
    (* Second program: *)
    b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0, If[n == 0,
         BellB[p]*p!, b[n, i-1, p] + b[n-i, Min[n-i, i-1], p+1]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 40] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k = 0..n} A000110(k) * A072574(n,k) = Sum_{k = 0..n} k! * A000110(k) * A008289(n,k).