A336139
Number of ways to choose a strict composition of each part of a strict composition of n.
Original entry on oeis.org
1, 1, 1, 5, 9, 17, 45, 81, 181, 397, 965, 1729, 3673, 7313, 15401, 34065, 68617, 135069, 266701, 556969, 1061921, 2434385, 4436157, 9120869, 17811665, 35651301, 68949549, 136796317, 283612973, 537616261, 1039994921, 2081261717, 3980842425, 7723253181, 15027216049
Offset: 0
The a(1) = 1 through a(5) = 17 splittings:
(1) (2) (3) (4) (5)
(1,2) (1,3) (1,4)
(2,1) (3,1) (2,3)
(1),(2) (1),(3) (3,2)
(2),(1) (3),(1) (4,1)
(1),(1,2) (1),(4)
(1),(2,1) (2),(3)
(1,2),(1) (3),(2)
(2,1),(1) (4),(1)
(1),(1,3)
(1,2),(2)
(1),(3,1)
(1,3),(1)
(2),(1,2)
(2,1),(2)
(2),(2,1)
(3,1),(1)
The version for partitions is
A063834.
The version for non-strict compositions is
A133494.
The version for strict partitions is
A279785.
Multiset partitions of partitions are
A001970.
Taking a composition of each part of a partition:
A075900.
Taking a composition of each part of a strict partition:
A304961.
Taking a strict composition of each part of a composition:
A307068.
Splittings of partitions are
A323583.
Compositions of parts of strict compositions are
A336127.
Set partitions of strict compositions are
A336140.
-
strs[n_]:=Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&];
Table[Length[Join@@Table[Tuples[strs/@ctn],{ctn,strs[n]}]],{n,0,15}]
A307068
Expansion of 1/(1 - Sum_{k>=1} k!*x^(k*(k+1)/2) / Product_{j=1..k} (1 - x^j)).
Original entry on oeis.org
1, 1, 2, 6, 14, 34, 88, 216, 532, 1322, 3290, 8142, 20192, 50080, 124144, 307878, 763474, 1893038, 4694060, 11639580, 28861736, 71567206, 177460750, 440037738, 1091134276, 2705618900, 6708953156, 16635775698, 41250705518, 102286806130, 253634237896, 628921097352, 1559496588628
Offset: 0
From _Gus Wiseman_, Jul 18 2020: (Start)
The a(1) = 1 through a(4) = 14 ways to choose a strict composition of each part of a composition:
(1) (2) (3) (4)
(1),(1) (1,2) (1,3)
(2,1) (3,1)
(1),(2) (1),(3)
(2),(1) (2),(2)
(1),(1),(1) (3),(1)
(1),(1,2)
(1),(2,1)
(1,2),(1)
(2,1),(1)
(1),(1),(2)
(1),(2),(1)
(2),(1),(1)
(1),(1),(1),(1)
(End)
The version for partitions is
A270995.
Starting with a strict composition gives
A336139.
Strict compositions are counted by
A032020.
Partitions of each part of a partition are
A063834.
Compositions of each part of a partition are
A075900.
Compositions of each part of a composition are
A133494.
Strict partitions of each part of a strict partition are
A279785.
Compositions of each part of a strict partition are
A304961.
Strict partitions of each part of a composition are
A304969.
Compositions of each part of a strict composition are
A336127.
Set partitions of strict compositions are
A336140.
Strict compositions of each part of a partition are
A336141.
-
m:=80;
R:=PowerSeriesRing(Integers(), m);
Coefficients(R!( 1/(1 - (&+[Factorial(k)*x^Binomial(k+1,2)/(&*[ 1-x^j: j in [1..k]]): k in [1..m+2]]) ) )); // G. C. Greubel, Jan 25 2024
-
T:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
`if`(k=0, `if`(n=0, 1, 0), T(n-k, k) +k*T(n-k, k-1)))
end:
g:= proc(n) option remember; add(T(n, k), k=0..floor((sqrt(8*n+1)-1)/2)) end:
a:= proc(n) option remember; `if`(n<1, 1,
add(a(n-i)*g(i), i=1..n))
end:
seq(a(n), n=0..32); # Alois P. Heinz, Dec 16 2022
-
nmax = 32; CoefficientList[Series[1/(1 - Sum[k!*x^(k*(k+1)/2)/Product[ (1-x^j), {j,k}], {k,nmax}]), {x, 0, nmax}], x]
-
m=80;
def p(x, j): return product(1-x^k for k in range(1,j+1))
def f(x): return 1/(1 - sum(factorial(j)*x^binomial(j+1,2)/p(x,j) for j in range(1, m+3)) )
def A307068_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(x) ).list()
A307068_list(m) # G. C. Greubel, Jan 25 2024
Showing 1-2 of 2 results.
Comments