A336179 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} (-k)^j * binomial(n,j)^3.
1, 1, 1, 1, 0, 1, 1, -1, -6, 1, 1, -2, -11, 0, 1, 1, -3, -14, 47, 90, 1, 1, -4, -15, 136, 241, 0, 1, 1, -5, -14, 261, 106, -2281, -1680, 1, 1, -6, -11, 416, -639, -8492, -3779, 0, 1, 1, -7, -6, 595, -2294, -17523, 35344, 104831, 34650, 1, 1, -8, 1, 792, -5135, -25624, 188049, 395008, -110207, 0, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 0, -1, -2, -3, -4, ... 1, -6, -11, -14, -15, -14, ... 1, 0, 47, 136, 261, 416, ... 1, 90, 241, 106, -639, -2294, ... 1, 0, -2281, -8492, -17523, -25624, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Programs
-
Mathematica
Unprotect[Power]; 0^0 = 1; T[n_, k_] := Sum[(-k)^j * Binomial[n, j]^3, {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Jul 11 2020 *)
Comments