A307884
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 + 2*(k-1)*x + ((k+1)*x)^2).
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, -1, -2, 1, 1, -2, -3, 0, 1, 1, -3, -2, 11, 6, 1, 1, -4, 1, 28, 1, 0, 1, 1, -5, 6, 45, -74, -81, -20, 1, 1, -6, 13, 56, -255, -92, 141, 0, 1, 1, -7, 22, 55, -554, 477, 1324, 363, 70, 1, 1, -8, 33, 36, -959, 2376, 2689, -3656, -1791, 0, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, -5, ...
1, -2, -3, -2, 1, 6, 13, ...
1, 0, 11, 28, 45, 56, 55, ...
1, 6, 1, -74, -255, -554, -959, ...
1, 0, -81, -92, 477, 2376, 6475, ...
1, -20, 141, 1324, 2689, -804, -20195, ...
-
T[n_, k_] := Sum[If[k == j == 0, 1, (-k)^j] * Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)
A336180
a(n) = Sum_{k=0..n} (-n)^k * binomial(n,k)^3.
Original entry on oeis.org
1, 0, -11, 136, -639, -25624, 1133245, -27431424, 259448833, 17402599792, -1405909697499, 63884679938960, -1830503703899519, -5324845289379264, 5494299851213052685, -496909924804074650624, 30201149245542631276545, -1236819213672144144878752, 5410434345252588202534741
Offset: 0
-
a := n -> hypergeom([-n, -n, -n], [1, 1], n):
seq(simplify(a(n)), n=0..18); # Peter Luschny, Dec 22 2020
-
Array[Function[n, 1 + Sum[(-n)^k Binomial[n, k]^3, {k, n}]], 19, 0] (* Jan Mangaldan, Jul 14 2020 *)
-
{a(n) = sum(k=0, n, (-n)^k*binomial(n, k)^3)}
A336182
a(n) = Sum_{k=0..n} (-3)^k * binomial(n,k)^3.
Original entry on oeis.org
1, -2, -14, 136, 106, -8492, 35344, 395008, -4547462, -4838372, 365951356, -1601617712, -19715085584, 233866581856, 285409397056, -20406741254144, 90043530872218, 1169513126877676, -13961261999882204, -18779832792734384, 1270510266589738636, -5584024444211882792
Offset: 0
-
f:= gfun:-rectoproc({(24*n^3 + 176*n^2 + 416*n + 320)*a(n + 1) + (279*n^3 + 2325*n^2 + 6382*n + 5776)*a(n + 2) + (18*n^3 + 168*n^2 + 514*n + 512)*a(n + 3) + (3*n^3 + 31*n^2 + 104*n + 112)*a(n + 4), a(0) = 1, a(1) = -2, a(2) = -14, a(3) = 136},a(n),remember):
map(f, [$0..30]); # Robert Israel, Jul 12 2020
-
a[n_] := Sum[(-3)^k * Binomial[n, k]^3, {k, 0, n}]; Array[a, 22, 0] (* Amiram Eldar, Jul 11 2020 *)
-
{a(n) = sum(k=0, n, (-3)^k*binomial(n,k)^3)}
A336163
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j * binomial(n,j)^3.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 10, 1, 1, 4, 21, 56, 1, 1, 5, 34, 171, 346, 1, 1, 6, 49, 352, 1521, 2252, 1, 1, 7, 66, 605, 3946, 14283, 15184, 1, 1, 8, 85, 936, 8065, 46744, 138909, 104960, 1, 1, 9, 106, 1351, 14346, 113525, 573616, 1385163, 739162, 1, 1, 10, 129, 1856, 23281, 231876, 1656145, 7217536, 14072193, 5280932, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 10, 21, 34, 49, 66, ...
1, 56, 171, 352, 605, 936, ...
1, 346, 1521, 3946, 8065, 14346, ...
1, 2252, 14283, 46744, 113525, 231876, ...
-
Unprotect[Power]; 0^0 = 1; T[n_, k_] := Sum[k^j * Binomial[n, j]^3, {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Jul 11 2020 *)
A336181
a(n) = Sum_{k=0..n} (-2)^k * binomial(n,k)^3.
Original entry on oeis.org
1, -1, -11, 47, 241, -2281, -3779, 104831, -110207, -4415281, 16955269, 161498831, -1252782959, -4376471737, 73606867309, 11876256767, -3715460133887, 9838677757343, 160921055160469, -957644184613393, -5553047963695439, 65231925087461879, 102267746634093469
Offset: 0
-
a[n_] := Sum[(-2)^k * Binomial[n, k]^3, {k, 0, n}]; Array[a, 23, 0] (* Amiram Eldar, Jul 11 2020 *)
-
{a(n) = sum(k=0, n, (-2)^k*binomial(n, k)^3)}
A336201
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} (-k)^j * binomial(n,j)^k.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, -1, 0, 1, 1, -2, -3, 0, 1, 1, -3, -14, 11, 0, 1, 1, -4, -47, 136, 1, 0, 1, 1, -5, -134, 909, 106, -81, 0, 1, 1, -6, -347, 4736, 3585, -8492, 141, 0, 1, 1, -7, -846, 21655, 61906, -323523, 35344, 363, 0, 1, 1, -8, -1983, 91512, 771601, -8065624, 2201809, 395008, -1791, 0, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, ...
1, 0, -3, -14, -47, -134, ...
1, 0, 11, 136, 909, 4736, ...
1, 0, 1, 106, 3585, 61906, ...
1, 0, -81, -8492, -323523, -8065624, ...
-
T[n_, k_] := Sum[If[k == j == 0, 1, (-k)^j] * Binomial[n, j]^k, {j, 0, n}]; Table[T[k, n-k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 01 2021 *)
Showing 1-6 of 6 results.
Comments