A336194 Table read by antidiagonals upwards: T(n,k) = (n - 1)*k^3 - 1, with n > 1 and k > 0.
0, 1, 7, 2, 15, 26, 3, 23, 53, 63, 4, 31, 80, 127, 124, 5, 39, 107, 191, 249, 215, 6, 47, 134, 255, 374, 431, 342, 7, 55, 161, 319, 499, 647, 685, 511, 8, 63, 188, 383, 624, 863, 1028, 1023, 728, 9, 71, 215, 447, 749, 1079, 1371, 1535, 1457, 999, 10, 79, 242, 511, 874, 1295, 1714, 2047, 2186, 1999, 1330
Offset: 2
Examples
The table starts at row n = 2 and column k = 1 as: 0 7 26 63 124 215 ... 1 15 53 127 249 431 ... 2 23 80 191 374 647 ... 3 31 107 255 499 863 ... 4 39 134 319 624 1079 ... 5 47 161 383 749 1295 ... ...
Links
- Marcin Pilipczuk, Ni Luh Dewi Sintiari, Stéphan Thomassé and Nicolas Trotignon, (Theta, triangle)-free and (even hole, K4)-free graphs. Part 2 : bounds on treewidth, arXiv:2001.01607 [cs.DM], 2020. See p. 7.
- Index entries for sequences related to trees.
Crossrefs
Programs
-
Mathematica
T[n_,k_]:=(n-1)*k^3-1; Flatten[Table[T[n+1-k,k],{n,2,12},{k,1,n-1}]]
-
PARI
T(n, k) = (n - 1)*k^3 - 1
Comments